Suppr超能文献

基于机器学习的光学相干断层扫描血管造影图像分析用于年龄相关性黄斑变性

Machine Learning-Based Analysis of Optical Coherence Tomography Angiography Images for Age-Related Macular Degeneration.

作者信息

Alfahaid Abdullah, Morris Tim, Cootes Tim, Keane Pearse A, Khalid Hagar, Pontikos Nikolas, Alharbi Fatemah, Alalwany Easa, Almars Abdulqader M, Aldweesh Amjad, ALMansour Abdullah G M, Sergouniotis Panagiotis I, Balaskas Konstantinos

机构信息

Department of Computer Science, College of Computer Science and Engineering at Yanbu, Taibah University, Medina 46421, Saudi Arabia.

Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK.

出版信息

Biomedicines. 2025 Sep 5;13(9):2152. doi: 10.3390/biomedicines13092152.

Abstract

Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.

摘要

年龄相关性黄斑变性(AMD)是老年人视力损害的主要原因。光学相干断层扫描血管造影(OCTA)是一种非侵入性成像方式,能够详细显示视网膜血管层。然而,由于数据量庞大、模式多变以及细微异常,对OCTA图像进行临床评估往往具有挑战性。本研究旨在开发自动算法,以检测和量化OCTA图像中的AMD,从而减轻眼科医生的工作量并提高诊断准确性。开发了两种基于纹理的算法,用于在不依赖分割的情况下对OCTA图像进行分类。第一种算法使用全局部纹理特征,而第二种算法应用主成分分析(PCA)来消除纹理特征的相关性并进行降维。局部纹理描述符,包括旋转不变均匀局部二值模式(LBP2riu)、局部二值模式(LBP)和二元稳健独立基本特征(BRIEF),与支持向量机(SVM)和K近邻(KNN)等机器学习分类器相结合。来自曼彻斯特皇家眼科医院和摩尔菲尔德眼科医院的OCTA数据集,涵盖健康、干性AMD和湿性AMD眼睛,用于评估。第一种算法在区分健康眼睛和湿性AMD方面,受试者操作特征曲线(AUC)的平均面积达到1.00±0.00。第二种算法在区分干性AMD和湿性AMD方面表现出卓越性能(AUC 0.85±0.02)。所提出的算法在OCTA工作流程中具有快速准确诊断AMD的强大潜力。通过减少人工图像评估及相关变异性,它们可能有助于改善临床决策和患者护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验