Suppr超能文献

利用深度学习实现光学相干断层扫描血管造影中脉络膜新生血管的自动诊断与分割。

Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.

作者信息

Wang Jie, Hormel Tristan T, Gao Liqin, Zang Pengxiao, Guo Yukun, Wang Xiaogang, Bailey Steven T, Jia Yali

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.

Abstract

Accurate identification and segmentation of choroidal neovascularization (CNV) is essential for the diagnosis and management of exudative age-related macular degeneration (AMD). Projection-resolved optical coherence tomographic angiography (PR-OCTA) enables both cross-sectional and visualization of CNV. However, CNV identification and segmentation remains difficult even with PR-OCTA due to the presence of residual artifacts. In this paper, a fully automated CNV diagnosis and segmentation algorithm using convolutional neural networks (CNNs) is described. This study used a clinical dataset, including both scans with and without CNV, and scans of eyes with different pathologies. Furthermore, no scans were excluded due to image quality. In testing, all CNV cases were diagnosed from non-CNV controls with 100% sensitivity and 95% specificity. The mean intersection over union of CNV membrane segmentation was as high as 0.88. By enabling fully automated categorization and segmentation, the proposed algorithm should offer benefits for CNV diagnosis, visualization monitoring.

摘要

准确识别和分割脉络膜新生血管(CNV)对于渗出性年龄相关性黄斑变性(AMD)的诊断和治疗至关重要。投影分辨光学相干断层扫描血管造影(PR-OCTA)能够实现CNV的横断面成像和可视化。然而,由于残留伪影的存在,即使使用PR-OCTA,CNV的识别和分割仍然困难。本文描述了一种使用卷积神经网络(CNN)的全自动CNV诊断和分割算法。本研究使用了一个临床数据集,包括有CNV和无CNV的扫描,以及患有不同病理状况眼睛的扫描。此外,没有因图像质量而排除任何扫描。在测试中,所有CNV病例均从非CNV对照中诊断出来,灵敏度为100%,特异性为95%。CNV膜分割的平均交并比高达0.88。通过实现全自动分类和分割,所提出的算法应为CNV诊断、可视化监测带来益处。

相似文献

引用本文的文献

1
Advances in OCT Angiography.光学相干断层扫描血管造影术的进展。
Transl Vis Sci Technol. 2025 Mar 3;14(3):6. doi: 10.1167/tvst.14.3.6.
2
Bibliometric analysis of research on the application of deep learning to ophthalmology.深度学习在眼科应用研究的文献计量分析
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.

本文引用的文献

3
10
Artificial intelligence in retina.视网膜中的人工智能。
Prog Retin Eye Res. 2018 Nov;67:1-29. doi: 10.1016/j.preteyeres.2018.07.004. Epub 2018 Aug 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验