Suppr超能文献

使用体素级静息态功能磁共振成像预测局部脑血流量

Predicting Regional Cerebral Blood Flow Using Voxel-Wise Resting-State Functional MRI.

作者信息

Ke Hongjie, Adhikari Bhim M, Pan Yezhi, Keator David B, Amen Daniel, Gao Si, Ma Yizhou, Thompson Paul M, Jahanshad Neda, Turner Jessica A, van Erp Theo G M, Milad Mohammed R, Soares Jair C, Calhoun Vince D, Dukart Juergen, Hong L Elliot, Ma Tianzhou, Kochunov Peter

机构信息

Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, USA.

Department of Psychiatry and Behavioral Sciences, UTHealth Houston School of Behavioral Health Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.

出版信息

Brain Sci. 2025 Aug 23;15(9):908. doi: 10.3390/brainsci15090908.

Abstract

Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychiatric disorders, including major depressive disorder (MDD). Here, we show that rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while correcting for partial volume averaging (PVA) artifacts. Cortical patterns of MDD-related CBF differences decoded from rsfMRI using a PVA-corrected approach showed excellent agreement with CBF measured using single-photon emission computed tomography (SPECT) and arterial spin labeling (ASL). A support vector machine algorithm was trained to decode cortical voxel-wise CBF from temporal and power-spectral features of voxel-level rsfMRI time series while accounting for PVA. Three datasets, Amish Connectome Project ( = 300; 179 M/121 F, both rsfMRI and ASL data), UK Biobank ( = 8396; 3097 M/5319 F, rsfMRI data), and Amen Clinics Inc. datasets ( = 372: = 183 M/189 F, SPECT data), were used. PVA-corrected CBF values predicted from rsfMRI showed significant correlation with the whole-brain ( = 0.54, = 2 × 10) and 31 out of 34 regional ( = 0.33 to 0.59, < 1.1 × 10) rCBF measures from 3D ASL. PVA-corrected rCBF values showed significant regional deficits in the UKBB MDD group (Cohen's = -0.30 to -0.56, < 10), with the strongest effect sizes observed in the frontal and cingulate areas. The regional deficit pattern of MDD-related hypoperfusion showed excellent agreement with CBF deficits observed in the SPECT data ( = 0.74, = 4.9 × 10). Consistent with previous findings, this new method suggests that perfusion signals can be predicted using voxel-wise rsfMRI signals. CBF values computed from widely available rsfMRI can be used to study the impact of neuropsychiatric disorders such as MDD on cerebral neurophysiology.

摘要

局部脑血流量(rCBF)是包括重度抑郁症(MDD)在内的神经精神疾病的一种假定生物标志物。在此,我们表明,在校正部分容积平均(PVA)伪影的同时,可以在体素水平从静息态功能磁共振成像(rsfMRI)预测rCBF。使用PVA校正方法从rsfMRI解码的与MDD相关的CBF差异的皮质模式,与使用单光子发射计算机断层扫描(SPECT)和动脉自旋标记(ASL)测量的CBF显示出极好的一致性。训练了一种支持向量机算法,以在考虑PVA的情况下,从体素水平rsfMRI时间序列的时间和功率谱特征解码皮质体素级CBF。使用了三个数据集,阿米什人连接组项目(n = 300;179名男性/121名女性,同时有rsfMRI和ASL数据)、英国生物银行(n = 8396;3097名男性/5319名女性,rsfMRI数据)和阿门诊所公司数据集(n = 372:183名男性/189名女性,SPECT数据)。从rsfMRI预测的经PVA校正的CBF值与来自3D ASL的全脑rCBF测量值(r = 0.54,p = 2 × 10⁻⁴)以及34个区域中的31个区域(r = 0.33至0.59,p < 1.1 × 10⁻⁴)显示出显著相关性。在英国生物银行的MDD组中,经PVA校正的rCBF值显示出显著的区域缺陷(科恩d值 = -0.30至-0.56,p < 10⁻⁴),在额叶和扣带区域观察到最强的效应大小。与MDD相关的灌注不足的区域缺陷模式与SPECT数据中观察到的CBF缺陷显示出极好的一致性(r = 0.74,p = 4.9 × 10⁻⁴)。与先前的发现一致,这种新方法表明可以使用体素级rsfMRI信号预测灌注信号。从广泛可用的rsfMRI计算出的CBF值可用于研究诸如MDD等神经精神疾病对脑神经生理学的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验