Stamopoulos Dimosthenis
Department of Physics, School of Science, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784 Athens, Greece.
Materials (Basel). 2025 Sep 12;18(18):4282. doi: 10.3390/ma18184282.
Through the years, the asymmetry in the constitutive relations that define the electric and magnetic polarization, and , respectively, by the relevant vector field, and , has been imprinted, rather arbitrarily, in Maxwell's equations. Accordingly, in linear, homogeneous, and isotropic (LHI) materials, the electric and magnetic polarization are defined via = χε ('P-E, χ' formulation; 0 ≤ χ < ∞) and = χ ('M-H, χ' formulation; -1 ≤ χ < ∞), respectively. Recently, the constitutive relation of the polarization was revisited in LHI dielectrics by introducing an electric susceptibility, χ, which couples linearly the reverse polarization, P~ = -, with the electric displacement through P~ = χ ('P-D, χ' formulation; -1 ≤ χ ≤ 0). Here, the 'P-D, χ' formulation is generalized for the time-dependent case. It is documented that the susceptibility and polarization of LHI dielectric and magnetic materials can be described by the 'P-D, χ' and 'M-H, χ' formulation, respectively, on a common basis. To this end, the depolarizing effect is taken into account, which unavoidably emerges in realistic specimens of limited size, by introducing a series scheme to describe the evolution of polarization and calculate the susceptibility. The engagement of the depolarizing factor N (0 ≤ N≤ 1) with the accompanying convergence conditions dictates that the susceptibility of LHI materials, whether electric or magnetic, should range within [-1, 1]. The 'P-D, χ' and 'M-H, χ' formulations conform with this expectation, while the 'P-E, χ' does not. Remarkably, Maxwell's equations are unaltered by the 'P-D, χ' formulation. Thus, all time-dependent processes of electromagnetism described by the standard 'P-E, χ' approach, are reproduced equivalently, or even advantageously, by the alternative 'P-D, χ' formulation.
多年来,分别由相关矢量场(\vec{E})和(\vec{H})定义电极化和磁极化的本构关系中的不对称性,相当随意地被纳入了麦克斯韦方程组。因此,在线性、均匀且各向同性(LHI)材料中,电极化和磁极化分别通过(\vec{P}=\chi\varepsilon_0\vec{E})(“(\vec{P}-\vec{E}),(\chi)”表述;(0\leq\chi\lt\infty))和(\vec{M}=\chi\mu_0\vec{H})(“(\vec{M}-\vec{H}),(\chi)”表述;(-1\leq\chi\lt\infty))来定义。最近,通过引入一个电导率(\chi),在LHI电介质中重新审视了极化的本构关系,该电导率通过(\vec{P}^* = -\chi\vec{D})(“(\vec{P}-\vec{D}),(\chi)”表述;(-1\leq\chi\leq0))将反向极化(\vec{P}^*)与电位移(\vec{D})线性耦合。在此,“(\vec{P}-\vec{D}),(\chi)”表述被推广到了随时间变化的情况。据记载,LHI电介质和磁性材料的电导率和极化可以在一个共同的基础上分别用“(\vec{P}-\vec{D}),(\chi)”和“(\vec{M}-\vec{H}),(\chi)”表述来描述。为此,通过引入一个级数方案来描述极化的演化并计算电导率,考虑了在有限尺寸的实际样品中不可避免出现的退极化效应。退极化因子(N)((0\leq N\leq1))与伴随的收敛条件的结合表明,LHI材料(无论是电介质还是磁性材料)的电导率应在([-1,1])范围内。“(\vec{P}-\vec{D}),(\chi)”和“(\vec{M}-\vec{H}),(\chi)”表述符合这一预期,而“(\vec{P}-\vec{E}),(\chi)”表述则不符合。值得注意的是,“(\vec{P}-\vec{D}),(\chi)”表述并未改变麦克斯韦方程组。因此,标准的“(\vec{P}-\vec{E}),(\chi)”方法所描述的所有电磁随时间变化的过程,都可以由替代的“(\vec{P}-\vec{D})،(\chi)”表述等效地甚至更有利地重现。