Suppr超能文献

线性、均匀且各向同性材料中的电磁学:磁化率和极化中电与磁的类比。

Electromagnetism in Linear, Homogeneous and Isotropic Materials: The Analogy Between Electricity and Magnetism in the Susceptibility and Polarization.

作者信息

Stamopoulos Dimosthenis

机构信息

Department of Physics, School of Science, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784 Athens, Greece.

出版信息

Materials (Basel). 2025 Sep 12;18(18):4282. doi: 10.3390/ma18184282.

Abstract

Through the years, the asymmetry in the constitutive relations that define the electric and magnetic polarization, and , respectively, by the relevant vector field, and , has been imprinted, rather arbitrarily, in Maxwell's equations. Accordingly, in linear, homogeneous, and isotropic (LHI) materials, the electric and magnetic polarization are defined via = χε ('P-E, χ' formulation; 0 ≤ χ < ∞) and = χ ('M-H, χ' formulation; -1 ≤ χ < ∞), respectively. Recently, the constitutive relation of the polarization was revisited in LHI dielectrics by introducing an electric susceptibility, χ, which couples linearly the reverse polarization, P~ = -, with the electric displacement through P~ = χ ('P-D, χ' formulation; -1 ≤ χ ≤ 0). Here, the 'P-D, χ' formulation is generalized for the time-dependent case. It is documented that the susceptibility and polarization of LHI dielectric and magnetic materials can be described by the 'P-D, χ' and 'M-H, χ' formulation, respectively, on a common basis. To this end, the depolarizing effect is taken into account, which unavoidably emerges in realistic specimens of limited size, by introducing a series scheme to describe the evolution of polarization and calculate the susceptibility. The engagement of the depolarizing factor N (0 ≤ N≤ 1) with the accompanying convergence conditions dictates that the susceptibility of LHI materials, whether electric or magnetic, should range within [-1, 1]. The 'P-D, χ' and 'M-H, χ' formulations conform with this expectation, while the 'P-E, χ' does not. Remarkably, Maxwell's equations are unaltered by the 'P-D, χ' formulation. Thus, all time-dependent processes of electromagnetism described by the standard 'P-E, χ' approach, are reproduced equivalently, or even advantageously, by the alternative 'P-D, χ' formulation.

摘要

多年来,分别由相关矢量场(\vec{E})和(\vec{H})定义电极化和磁极化的本构关系中的不对称性,相当随意地被纳入了麦克斯韦方程组。因此,在线性、均匀且各向同性(LHI)材料中,电极化和磁极化分别通过(\vec{P}=\chi\varepsilon_0\vec{E})(“(\vec{P}-\vec{E}),(\chi)”表述;(0\leq\chi\lt\infty))和(\vec{M}=\chi\mu_0\vec{H})(“(\vec{M}-\vec{H}),(\chi)”表述;(-1\leq\chi\lt\infty))来定义。最近,通过引入一个电导率(\chi),在LHI电介质中重新审视了极化的本构关系,该电导率通过(\vec{P}^* = -\chi\vec{D})(“(\vec{P}-\vec{D}),(\chi)”表述;(-1\leq\chi\leq0))将反向极化(\vec{P}^*)与电位移(\vec{D})线性耦合。在此,“(\vec{P}-\vec{D}),(\chi)”表述被推广到了随时间变化的情况。据记载,LHI电介质和磁性材料的电导率和极化可以在一个共同的基础上分别用“(\vec{P}-\vec{D}),(\chi)”和“(\vec{M}-\vec{H}),(\chi)”表述来描述。为此,通过引入一个级数方案来描述极化的演化并计算电导率,考虑了在有限尺寸的实际样品中不可避免出现的退极化效应。退极化因子(N)((0\leq N\leq1))与伴随的收敛条件的结合表明,LHI材料(无论是电介质还是磁性材料)的电导率应在([-1,1])范围内。“(\vec{P}-\vec{D}),(\chi)”和“(\vec{M}-\vec{H}),(\chi)”表述符合这一预期,而“(\vec{P}-\vec{E}),(\chi)”表述则不符合。值得注意的是,“(\vec{P}-\vec{D}),(\chi)”表述并未改变麦克斯韦方程组。因此,标准的“(\vec{P}-\vec{E}),(\chi)”方法所描述的所有电磁随时间变化的过程,都可以由替代的“(\vec{P}-\vec{D})،(\chi)”表述等效地甚至更有利地重现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验