Suppr超能文献

小分子药物发现中的人工智能:方法、应用及实际成果的批判性综述

Artificial Intelligence in Small-Molecule Drug Discovery: A Critical Review of Methods, Applications, and Real-World Outcomes.

作者信息

Niazi Sarfaraz K

机构信息

College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.

出版信息

Pharmaceuticals (Basel). 2025 Aug 26;18(9):1271. doi: 10.3390/ph18091271.

Abstract

Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic AI systems, highlighting their applications in target identification, hit discovery, lead optimization, and safety prediction. We present both successes and failures to provide a balanced perspective. Notable achievements include baricitinib (BenevolentAI/Eli Lilly, an existing drug repurposed through AI-assisted analysis for COVID-19 and rheumatoid arthritis), halicin (MIT, preclinical antibiotic), DSP-1181 (Exscientia, discontinued after Phase I), and ISM001-055/rentosertib (Insilico Medicine, positive Phase IIa results). However, several AI-assisted compounds have also faced challenges in clinical development. DSP-1181 was discontinued after Phase I, despite a favorable safety profile, highlighting that the acceleration of discovery timelines by AI does not guarantee clinical success. Despite progress, challenges such as data quality, model interpretability, regulatory hurdles, and ethical concerns persist. We provide practical insights for integrating AI into drug discovery workflows, emphasizing hybrid human-AI approaches and the emergence of agentic AI systems that can autonomously navigate discovery pipelines. A critical evaluation of current limitations and future opportunities reveals that while AI offers significant potential as a complementary technology, realistic expectations and careful implementation are crucial for delivering innovative therapeutics.

摘要

人工智能(AI)正在成为小分子药物发现中有价值的辅助工具,增强而非取代传统方法。本综述考察了AI从早期基于规则的系统到先进的深度学习、生成模型、扩散模型和自主智能体AI系统的发展历程,重点介绍了它们在靶点识别、苗头化合物发现、先导化合物优化和安全性预测方面的应用。我们既展示了成功案例,也呈现了失败案例,以提供一个平衡的视角。显著成就包括巴瑞替尼(BenevolentAI/礼来公司,通过AI辅助分析重新用于治疗新冠肺炎和类风湿性关节炎的现有药物)、halicin(麻省理工学院,临床前抗生素)、DSP-1181(Exscientia公司,在I期试验后停止研发)以及ISM001-055/伦托西替(英矽智能,IIa期试验结果为阳性)。然而,一些AI辅助的化合物在临床开发中也面临挑战。DSP-1181尽管安全性良好,但在I期试验后仍停止研发,这突出表明AI加速发现时间表并不能保证临床成功。尽管取得了进展,但数据质量、模型可解释性、监管障碍和伦理问题等挑战依然存在。我们为将AI整合到药物发现工作流程中提供了实用见解,强调人机混合方法以及能够自主贯穿发现流程的智能体AI系统的出现。对当前局限性和未来机遇的批判性评估表明,虽然AI作为一种辅助技术具有巨大潜力,但现实的期望和谨慎的实施对于提供创新疗法至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验