Apostolidi Aikaterini, Stergiopoulos Georgios, Bellou Sofia, Markou Maria, Fotsis Theodore, Murphy Carol, Bagli Eleni
Foundation for Research & Technology-Hellas, Biomedical Research Institute (FORTH/BRI), 45110 Ioannina, Greece.
Confocal Laser Scanning Microscopy Unit, Network of Research Supporting Laboratories (NRSL), University of Ioannina, 45110 Ioannina, Greece.
Pharmaceuticals (Basel). 2025 Sep 13;18(9):1374. doi: 10.3390/ph18091374.
The inner blood-retinal barrier (iBRB) is a specialized neurovascular interface essential for retinal homeostasis and visual function and is compromised in several vision-threating conditions. Therefore, the ability to model iBRB function and dysfunction in a controlled, reproducible and scalable manner is crucial for pharmaceutical research. However, the complex anatomy and physiology of the iBRB raise challenges for cell-based in vitro modeling. : This review follows the evolution of iBRB models-from simple monolayers of retinal endothelial cells (ECs) to sophisticated multicellular microphysiological systems (MPs). Advanced diverse microfluidic platforms aim to replicate key structural, biochemical and functional aspects of the iBRB, each incorporating distinct strategies regarding cell sourcing, device design, flow dynamics and functional readouts. : Despite their limitations, these models are highly valuable for drug screening and mechanistic studies aimed at preserving or restoring barrier integrity while also helping to bridge the translational gap in ophthalmic drug discovery.
血视网膜内屏障(iBRB)是一种特殊的神经血管界面,对视网膜内环境稳定和视觉功能至关重要,在几种威胁视力的疾病中会受到损害。因此,以可控、可重复和可扩展的方式模拟iBRB功能和功能障碍的能力对于药物研究至关重要。然而,iBRB复杂的解剖结构和生理功能给基于细胞的体外建模带来了挑战。:本综述追踪了iBRB模型的发展历程——从简单的视网膜内皮细胞(ECs)单层到复杂的多细胞微生理系统(MPs)。先进多样的微流控平台旨在复制iBRB的关键结构、生化和功能方面,每个平台在细胞来源、装置设计、流动动力学和功能读数方面都采用了不同的策略。:尽管存在局限性,但这些模型对于旨在维持或恢复屏障完整性的药物筛选和机制研究非常有价值,同时也有助于弥合眼科药物发现中的转化差距。