Li Wei, Jiao Peiqi, Luo Dawei, Xin Qiang, Fan Bin, Wu Xiang, Gao Bo, Chen Qiang
State Key Laboratory of Optical Field Manipulation Science and Technology, Chengdu 610209, China.
Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
Micromachines (Basel). 2025 Sep 22;16(9):1073. doi: 10.3390/mi16091073.
The polymer deposition layer (PDL) formed during inductively coupled plasma (ICP) processing significantly limits the figuring accuracy and surface quality of fused silica optics. This study investigates the formation mechanism, composition, and evolution of the PDL under varying dwell times and proposes an innovative dwell time gradient strategy to suppress roughness deterioration. A significant disparity in hardness and elastic modulus between the deposition layer and the substrate is revealed, explaining its preferential removal and protective buffering effect in computer-controlled optical surfacing (CCOS). A hybrid ICP-CCOS polishing process was developed for processing a ϕ100 mm fused silica mirror. The results show that within 33 min, the surface graphic error RMS was significantly reduced from 58.006 nm to 12.111 nm, and within 90 min, the surface roughness was ultra-precisely reduced from Ra 1.719 nm to Ra 0.151 nm. The average processing efficiency was approximately 0.63 cm/min. Critically, a damage-free, ultra-smooth surface without subsurface damage (SSD) was successfully achieved. This hybrid process enables the simultaneous optimization of figure accuracy and roughness, eliminating the need for iterative figuring cycles. It provides a novel theoretical framework for high-precision figuring and post-ICP polymer removal, advancing the efficient fabrication of high-performance optics.
电感耦合等离子体(ICP)处理过程中形成的聚合物沉积层(PDL)显著限制了熔融石英光学元件的加工精度和表面质量。本研究调查了不同保压时间下PDL的形成机理、成分和演变,并提出了一种创新的保压时间梯度策略来抑制粗糙度恶化。研究揭示了沉积层与基底之间硬度和弹性模量的显著差异,解释了其在计算机控制光学表面成形(CCOS)中的优先去除和保护缓冲作用。开发了一种ICP-CCOS混合抛光工艺来加工直径100 mm的熔融石英镜。结果表明,在33分钟内,表面图形误差均方根(RMS)从58.006 nm显著降低至12.111 nm,在90分钟内,表面粗糙度从Ra 1.719 nm超精密降低至Ra 0.151 nm。平均加工效率约为0.63 cm/min。至关重要的是,成功实现了无损伤、超光滑且无亚表面损伤(SSD)的表面。这种混合工艺能够同时优化图形精度和粗糙度,无需进行反复的图形加工循环。它为高精度图形加工和ICP后聚合物去除提供了一个新的理论框架,推动了高性能光学元件的高效制造。