Suppr超能文献

Molecular dynamics simulations of silicon-fluorine etching.

作者信息

Darcy A, Galijatovic A, Barth R, Kenny T, Krantzman K D, Schoolcraft T A

机构信息

Department of Chemistry, College of Charleston, South Carolina 29424, USA.

出版信息

J Mol Graph. 1996 Oct;14(5):260-71, 278. doi: 10.1016/s0263-7855(96)00080-x.

Abstract

Molecular dynamics simulations of the reactions between gaseous fluorine atoms and (SiFx)n adsorbates on the Si(100) - (2 x 1) surface are performed using the SW potential and compared to simulations with the WWC reparameterization of the SW potential. Theoretical and experimental work has demonstrated that the reactive fluorosilyl layer during silicon-fluorine etching is composed of tower-like adspecies of SiF, SiF2 and SiF3 groups. The objective of the simulations is to determine how the chemical composition, mechanism of formation, and energy distribution of the etched gas-phase products depend on the identity of the reacting adsorbate, the incident kinetic energy, and the parameterization of the potential energy function. Three reactions are simulated: F(g) + SiF3(a), F(g) + SiF2-SiF3(a), and F(g) + SiF2-SiF2-SiF3(a). SiF4 is the major product and Si2F6 and Si3F8 are minor products. In Si2F6 and Si3F8, the silicon-fluorine bond that is formed is stronger than the silicon-silicon bond in the molecule and, therefore, the majority of these products have enough energy to dissociate and will fragment before reaching the detector. An SN2-like mechanism is the primary mechanism responsible for the formation of SiF4, Si2F6, and Si3F8. In addition, at higher energies, the simulations have discovered a previously unknown mechanism for the formation of SiF4, which involves an insertion between a silicon-silicon bond. The results of the simulations with the two potentials differ quite substantially in their prediction of the reactivity of the adsorbates. The SW potential predicts a 2- to 3-eV lower energy threshold for reaction and a much higher reaction cross-section, especially for the SiF4 product. These results are explained in terms of the differences in the potential energy functions used to describe the silicon-fluorine interactions. In addition, the results are compared to experimental data on silicon-fluorine etching.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验