Bellahsene Houda, Sene Saad, Félix Gautier, Fabregue Nicolas, Marcos Michel, Uhart Arnaud, Dupin Jean-Charles, Oliviero Erwan, Larionova Joulia, Ferrari Marc, Guari Yannick
Institut Charles Gerhardt Montpellier (ICGM), Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), University of Montpellier (UM), 34293 Montpellier, France.
Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS), Centre National d'Etudes Spatiales (CNES) Aix Marseille University (AMU), 13013 Marseille, France.
Nanomaterials (Basel). 2025 Sep 10;15(18):1391. doi: 10.3390/nano15181391.
This study investigates hyperpolishing of Zerodur substrates via chemical-mechanical polishing (CMP) using silica (SiO) and ceria (CeO) nanoparticles as controlled nano-abrasives. A pre-polishing stress-mirror stage was combined with systematic use of nanoparticles of variable size to evaluate surface-state evolution via optical rugosimeter, HRSEM, cross-sectional HRTEM, and XPS. A set of hexagonal mirrors with a circumscribed diameter of 30 mm was polished for one hour with each nanoparticle type. All tested slurries significantly improved surface quality, with both the smallest (37 nm) and largest (209 nm) SiO particles achieving similar final roughness, though larger particles showed a slight performance advantage that could be offset by longer polishing with smaller particles. CeO nanoparticles (30 nm) produced even better process efficiency and surface finishes than 37 nm SiO, demonstrating higher chemical-mechanical polishing efficiency with CeO. Sequential polishing strategies, first with 209 nm SiO, then with 37 nm SiO and 30 nm CeO, also enhanced surface quality, confirming trends from single-particle trials. One of the most effective protocols was adapted and scaled up to 135 mm Zerodur mirrors with spherical and plano geometries, representative of precision optical components. The strategic approach adopted to achieve a high-quality surface finish in a reduced processing time relies on the sequential use of nanoparticles acting as complementary nano-abrasives. Indeed, applying two hours of polishing with 209 nm SiO followed by two hours with 37 nm SiO yielded exceptional results, with area roughness (Sa) values of 1 Å for spherical and 0.9 Å for plano surfaces. These results demonstrate the capability of nanoparticle-assisted CMP to produce sub-nanometric surface finishes and offer a robust, scalable approach for high-end optical manufacturing.
本研究通过化学机械抛光(CMP),使用二氧化硅(SiO)和氧化铈(CeO)纳米颗粒作为可控纳米磨料,对微晶玻璃基板进行超精密抛光。预抛光应力镜阶段与系统使用不同尺寸的纳米颗粒相结合,通过光学粗糙度仪、高分辨率扫描电子显微镜(HRSEM)、横截面高分辨率透射电子显微镜(HRTEM)和X射线光电子能谱(XPS)来评估表面状态演变。对一组外接直径为30 mm的六边形反射镜,用每种纳米颗粒类型进行一小时的抛光。所有测试的浆料都显著提高了表面质量,最小(37 nm)和最大(209 nm)的SiO颗粒都达到了相似的最终粗糙度,不过较大颗粒显示出轻微的性能优势,这可以通过用较小颗粒进行更长时间的抛光来抵消。CeO纳米颗粒(30 nm)比37 nm的SiO产生了更高的加工效率和表面光洁度,表明CeO具有更高的化学机械抛光效率。先使用209 nm的SiO,然后使用37 nm的SiO和30 nm的CeO的顺序抛光策略也提高了表面质量,证实了单颗粒试验的趋势。其中一种最有效的方案被调整并扩大到具有球面和平板几何形状的135 mm微晶玻璃反射镜,这代表了精密光学元件。在缩短的加工时间内实现高质量表面光洁度所采用的策略性方法依赖于依次使用作为互补纳米磨料的纳米颗粒。事实上,先用209 nm的SiO抛光两小时,然后用37 nm的SiO抛光两小时,产生了优异的结果,球面的面积粗糙度(Sa)值为1 Å,平面表面的为0.9 Å。这些结果证明了纳米颗粒辅助CMP产生亚纳米级表面光洁度的能力,并为高端光学制造提供了一种稳健、可扩展的方法。