Li Wei, Xin Qiang, Fan Bin, Chen Qiang, Deng Yonghong
National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China.
Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
Micromachines (Basel). 2024 Jan 25;15(2):178. doi: 10.3390/mi15020178.
Advancements in astronomical telescopes and cutting-edge technologies, including deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography, have escalated demands and imposed stringent surface quality requirements on optical system components. Achieving near-ideal optical components requires ultra-smooth surfaces with sub-nanometer roughness, no sub-surface damage, minimal surface defects, low residual stresses, and intact lattice integrity. This necessity has driven the rapid development and diversification of ultra-smooth surface fabrication technologies. This paper summarizes recent advances in ultra-smooth surface processing technologies, categorized by their material removal mechanisms. A subsequent comparative analysis evaluates the roughness and polishing characteristics of ultra-smooth surfaces processed on various materials, including fused silica, monocrystalline silicon, silicon carbide, and sapphire. To maximize each process's advantages and achieve higher-quality surfaces, the paper discusses tailored processing methods and iterations for different materials. Finally, the paper anticipates future development trends in response to current challenges in ultra-smooth surface processing technology, providing a systematic reference for the study of the production of large-sized freeform surfaces.
天文望远镜及包括深紫外(DUV)和极紫外(EUV)光刻在内的前沿技术的进步,提升了对光学系统组件的需求,并对其表面质量提出了严格要求。要获得近乎理想的光学组件,需要具有亚纳米粗糙度的超光滑表面、无亚表面损伤、最小的表面缺陷、低残余应力以及完整的晶格完整性。这种需求推动了超光滑表面制造技术的快速发展和多样化。本文总结了超光滑表面加工技术的最新进展,并按其材料去除机制进行分类。随后的对比分析评估了在包括熔融石英、单晶硅、碳化硅和蓝宝石在内的各种材料上加工的超光滑表面的粗糙度和抛光特性。为了最大化每个工艺的优势并获得更高质量的表面,本文讨论了针对不同材料的定制加工方法和迭代。最后,本文预测了应对超光滑表面加工技术当前挑战的未来发展趋势,为大型自由曲面生产的研究提供了系统参考。