Suppr超能文献

迈向基于传感器的老年人移动性评估:一个整合PoseNet步态动力学和人体成分分析的多模态框架

Towards Sensor-Based Mobility Assessment for Older Adults: A Multimodal Framework Integrating PoseNet Gait Dynamics and InBody Composition.

作者信息

Chen Sinan, Kong Lingqi, Tong Zhaozhen, Yamaguchi Yuko, Nakamura Masahide

机构信息

Center of Mathematical and Data Sciences, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.

Graduate School of Engineering, Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.

出版信息

Sensors (Basel). 2025 Sep 19;25(18):5878. doi: 10.3390/s25185878.

Abstract

The acceleration of global population aging has driven a surge in demand for health monitoring among older adults. However, traditional mobility assessment methods mostly rely on invasive measurements or laboratory-grade equipment, making it difficult to achieve continuous monitoring in daily scenarios. This study investigated the correlation between dynamic gait characteristics and static body metrics to enhance the understanding of elderly mobility and overall health. A sensor-based framework was implemented, which utilizes the , combined with (a vision-based sensor) for dynamic gait analysis, and the bioelectrical impedance device for static body composition assessment. Key variables comprised the dynamic metric and static metrics, including , , , , and . Nineteen elderly participants aged 60-89 years underwent assessments; among them, 16 were males (84.21%), and 3 were females (15.79%), 50% were in the 80-89 age group, 95% did not live alone, and 90% were married. Dynamic gait data were analyzed for center displacement and horizontal directional shifts. A Pearson correlation analysis revealed that the mean directional shift positively correlated with (ρ=0.561, p<0.01), (ρ=0.496, p<0.01), and (ρ=0.497, p<0.01), highlighting the role of muscle strength in movement adaptability. Conversely, negative correlations were found with (ρ=-0.256) and (ρ=-0.342, p<0.05), suggesting that greater fat mass impedes dynamic mobility. This multimodal integration of dynamic movement patterns and static physiological metrics may enhance health monitoring comprehensiveness, particularly for early sarcopenia risk detection. The findings demonstrate the framework's potential, indicating mean directional shift as a valuable dynamic health indicator.

摘要

全球人口老龄化的加速推动了老年人对健康监测需求的激增。然而,传统的行动能力评估方法大多依赖侵入性测量或实验室级设备,难以在日常场景中实现持续监测。本研究调查了动态步态特征与静态身体指标之间的相关性,以加深对老年人行动能力和整体健康状况的理解。实施了一个基于传感器的框架,该框架利用 ,结合 (一种基于视觉的传感器)进行动态步态分析,并利用 生物电阻抗设备进行静态身体成分评估。关键变量包括动态指标 和静态指标,包括 、 、 、 和 。19名年龄在60 - 89岁的老年参与者接受了评估;其中,16名男性(84.21%),3名女性(15.79%),50%在80 - 89岁年龄组,95%非独居,90%已婚。对动态步态数据进行了中心位移和水平方向偏移分析。Pearson相关分析显示,平均方向偏移与 (ρ = 0.561,p < 0.01)、 (ρ = 0.496,p < 0.01)和 (ρ = 0.497,p < 0.01)呈正相关,突出了肌肉力量在运动适应性中的作用。相反,与 (ρ = -0.256)和 (ρ = -0.342,p < 0.05)呈负相关,表明更高的脂肪量会阻碍动态行动能力。这种动态运动模式与静态生理指标的多模态整合可能会提高健康监测的全面性,特别是对于早期肌肉减少症风险的检测。研究结果证明了该框架的潜力,表明平均方向偏移是一个有价值的动态健康指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验