Suppr超能文献

基于视频的姿势估计在临床步态分析中的应用:多视角、临床人群及变化测量

Clinical gait analysis using video-based pose estimation: Multiple perspectives, clinical populations, and measuring change.

作者信息

Stenum Jan, Hsu Melody M, Pantelyat Alexander Y, Roemmich Ryan T

机构信息

Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States of America.

Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLOS Digit Health. 2024 Mar 26;3(3):e0000467. doi: 10.1371/journal.pdig.0000467. eCollection 2024 Mar.

Abstract

Gait dysfunction is common in many clinical populations and often has a profound and deleterious impact on independence and quality of life. Gait analysis is a foundational component of rehabilitation because it is critical to identify and understand the specific deficits that should be targeted prior to the initiation of treatment. Unfortunately, current state-of-the-art approaches to gait analysis (e.g., marker-based motion capture systems, instrumented gait mats) are largely inaccessible due to prohibitive costs of time, money, and effort required to perform the assessments. Here, we demonstrate the ability to perform quantitative gait analyses in multiple clinical populations using only simple videos recorded using low-cost devices (tablets). We report four primary advances: 1) a novel, versatile workflow that leverages an open-source human pose estimation algorithm (OpenPose) to perform gait analyses using videos recorded from multiple different perspectives (e.g., frontal, sagittal), 2) validation of this workflow in three different populations of participants (adults without gait impairment, persons post-stroke, and persons with Parkinson's disease) via comparison to ground-truth three-dimensional motion capture, 3) demonstration of the ability to capture clinically relevant, condition-specific gait parameters, and 4) tracking of within-participant changes in gait, as is required to measure progress in rehabilitation and recovery. Importantly, our workflow has been made freely available and does not require prior gait analysis expertise. The ability to perform quantitative gait analyses in nearly any setting using only low-cost devices and computer vision offers significant potential for dramatic improvement in the accessibility of clinical gait analysis across different patient populations.

摘要

步态功能障碍在许多临床人群中很常见,并且常常对独立性和生活质量产生深远而有害的影响。步态分析是康复的一个基础组成部分,因为在开始治疗之前识别和理解应针对的特定缺陷至关重要。不幸的是,由于进行评估所需的时间、金钱和精力成本过高,目前最先进的步态分析方法(例如基于标记的运动捕捉系统、带仪器的步态垫)在很大程度上难以获得。在此,我们展示了仅使用低成本设备(平板电脑)录制的简单视频就能对多个临床人群进行定量步态分析的能力。我们报告了四个主要进展:1)一种新颖、通用的工作流程,利用开源人体姿态估计算法(OpenPose)使用从多个不同视角(例如正面、矢状面)录制的视频进行步态分析;2)通过与地面真实三维运动捕捉进行比较,在三组不同的参与者(无步态障碍的成年人、中风后患者和帕金森病患者)中对该工作流程进行验证;3)证明能够捕捉临床相关的、特定病情的步态参数;4)跟踪参与者步态的内部变化,这是测量康复和恢复进展所必需的。重要的是,我们的工作流程已免费提供,并且不需要先前的步态分析专业知识。仅使用低成本设备和计算机视觉就能在几乎任何环境中进行定量步态分析,这为显著提高不同患者群体临床步态分析的可及性提供了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64a9/10965062/83a592a273a8/pdig.0000467.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验