Qiu Yingjie, Li Mingyue
Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
BMC Med Res Methodol. 2025 Sep 26;25(1):214. doi: 10.1186/s12874-025-02665-4.
Combination therapies involving novel agents, such as immunotherapies and targeted therapies, offer significant antitumor benefits by increasing dose intensity, targeting multiple pathways, and benefiting a broader patient population. To further explore these advantages, the National Cancer Institute (NCI) has initiated Combination Therapy Platform Trial with Molecular Analysis for Therapy Choice (ComboMATCH) to evaluate the effectiveness of new drug combinations in treating both adults and children. However, designing dose optimization trials for these combination therapies presents substantial challenges due to the complex interactions and unique mechanisms of action.
To address these challenges, we propose COMPACT, a Bayesian phase I-II randomized design for combination cancer therapies that uses progression-free survival (PFS) as the primary efficacy endpoint to identify the optimal dose combination (ODC) based on restricted mean survival time (RMST). The COMPACT design jointly evaluates both toxicity and PFS, with continuous toxicity monitoring throughout the trial. Toxicity probabilities are modeled using a partial ordering assumption without relying on complex parametric models, while PFS is modeled through a Bayesian Pareto proportional hazards model with gamma-shared frailty. The trial consists of two seamlessly connected stages. In the first stage, the dose space is explored primarily based on toxicity, while PFS data are concurrently collected. In the second stage, patients are adaptively randomized to safe and potentially promising dose combinations based on PFS, and the dose combination with the highest RMST among those deemed safe is selected as the ODC.
Simulation studies demonstrate that COMPACT has desirable operating characteristics and outperforms conventional designs in identifying the ODC, allocating more patients to ODC, while maintaining patient safety. Sensitivity analysis is performed to examine the robustness of the proposed design. A trial example is provided to facilitate the practical implementation of the proposed COMPACT design.
The proposed COMPACT design offers a novel and robust framework for combination cancer therapies with progression-free survival end point.
涉及新型药物的联合疗法,如免疫疗法和靶向疗法,通过提高剂量强度、靶向多种途径以及使更广泛的患者群体受益,带来显著的抗肿瘤益处。为了进一步探索这些优势,美国国立癌症研究所(NCI)启动了“用于治疗选择的分子分析联合治疗平台试验(ComboMATCH)”,以评估新药物联合疗法在治疗成人和儿童方面的有效性。然而,由于这些联合疗法复杂的相互作用和独特的作用机制,为其设计剂量优化试验面临重大挑战。
为应对这些挑战,我们提出了COMPACT,这是一种用于联合癌症治疗的贝叶斯I-II期随机设计,它使用无进展生存期(PFS)作为主要疗效终点,基于受限平均生存时间(RMST)来确定最佳剂量组合(ODC)。COMPACT设计同时评估毒性和PFS,并在整个试验过程中持续监测毒性。毒性概率使用部分排序假设进行建模,无需依赖复杂的参数模型,而PFS则通过具有伽马共享脆弱性的贝叶斯帕累托比例风险模型进行建模。该试验由两个无缝连接的阶段组成。在第一阶段,主要基于毒性探索剂量空间,同时并行收集PFS数据。在第二阶段,根据PFS将患者自适应随机分配到安全且可能有前景的剂量组合,并在那些被认为安全的剂量组合中选择具有最高RMST的剂量组合作为ODC。
模拟研究表明,COMPACT具有理想的操作特性,在识别ODC方面优于传统设计,在保持患者安全的同时,将更多患者分配到ODC。进行了敏感性分析以检验所提出设计的稳健性。提供了一个试验示例以促进所提出的COMPACT设计的实际实施。
所提出的COMPACT设计为以无进展生存期为终点的联合癌症治疗提供了一个新颖且稳健的框架。