Gutteling Tjerk P, Mattout Jérémie, Daligault Sébastien, Jung Julien, Labyt Etienne, Schwartz Denis, Lecaignard Françoise
CERMEP-Imagerie du Vivant, MEG Departement, Lyon, France.
CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028, UMR5292, COPHY, Université Claude Bernard Lyon 1, Bron, France.
Hum Brain Mapp. 2025 Oct 1;46(14):e70368. doi: 10.1002/hbm.70368.
Magneto-encephalography (MEG) provides a higher spatial resolution than electro-encephalography (EEG) to measure human auditory responses. However, conventional cryogenic MEG systems (SQUID-MEG) suffer from severe technological restrictions limiting, for instance, routine clinical use. Fortunately, a new generation of MEG sensors, optically pumped magnetometers (OPMs), has been developed to bridge the gap, combining the wearability of EEG with the benefits of MEG signal acquisition. We aim to assess their potential for studying auditory mismatch processing. The auditory mismatch negativity (MMN) is a well-characterized evoked component observable using a passive oddball paradigm with two-tone sound sequences. It has been extensively described using both EEG and MEG and is part of many EEG-based clinical applications, such as the assessment of patients with disorders of consciousness. MMN is therefore a relevant candidate to evaluate OPM performance. We use recently developed Helium-OPMs, which are high dynamic range MEG sensors that operate at room temperature. We compare their performance with cryogenic SQUID-MEG and EEG in a passive frequency oddball paradigm. Results show a significant MMN across subjects in all modalities as well as a high temporal similarity between modalities. Signal-to-noise ratios were also similar, and detection of significant individual MMN (within-subjects) using the OPM system was equal to or better than EEG. Given that the OPM system tested here is a prototype comprised of only five sensors, these results are a promising step towards wearable MEG that combines the advantages of MEG and EEG.
脑磁图(MEG)在测量人类听觉反应时,提供了比脑电图(EEG)更高的空间分辨率。然而,传统的低温MEG系统(超导量子干涉仪 - MEG)存在严重的技术限制,例如限制了其在常规临床中的应用。幸运的是,新一代的MEG传感器——光泵磁力仪(OPM)已经被开发出来以弥补这一差距,它结合了EEG的可穿戴性和MEG信号采集的优势。我们旨在评估它们在研究听觉失配处理方面的潜力。听觉失配负波(MMN)是一种特征明确的诱发成分,可通过具有双音序列的被动奇偶数范式观察到。它已经在EEG和MEG中被广泛描述,并且是许多基于EEG的临床应用的一部分,例如对意识障碍患者的评估。因此,MMN是评估OPM性能的一个相关指标。我们使用最近开发的氦光泵磁力仪,它们是在室温下运行的高动态范围MEG传感器。我们在被动频率奇偶数范式中,将它们的性能与低温超导量子干涉仪 - MEG和EEG进行比较。结果显示,在所有模式下,受试者中均出现了显著的MMN,并且各模式之间在时间上具有高度相似性。信噪比也相似,并且使用OPM系统检测个体显著MMN(受试者内)的效果与EEG相当或更好。鉴于这里测试的OPM系统只是一个仅由五个传感器组成的原型,这些结果是朝着结合MEG和EEG优势的可穿戴MEG迈出的充满希望的一步。