Suppr超能文献

EefR突变通过激活AcrB缺失菌株中的隐性多药外排泵来驱动血根碱抗性。

EefR mutations drive sanguinarine resistance by activating cryptic multidrug efflux pumps in AcrB-Null .

作者信息

Shen Hao-Jie, Wang Jun-Feng, Xue Zheng-Jie, Shi Jia-Qi, Chen Bing, Chen Dong-Min, Chen Ni-Pi, Li Yu-Dong, Qian Chao-Dong

机构信息

College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.

School of Food sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.

出版信息

Virulence. 2025 Dec;16(1):2566244. doi: 10.1080/21505594.2025.2566244. Epub 2025 Sep 29.

Abstract

Antimicrobial resistance is one of the greatest threats to global health. A thorough comprehension of the underlying processes through which bacteria evolve the ability to withstand diverse stressors is vital for the development of efficacious strategies to address this challenge. This study aimed to elucidate the mechanisms underlying the adaptation of an -deficient strain of ATCC 35218 (35218m) to sanguinarine (SAN), the main component of phytobiotic derived from . Analysis of the -selected SAN-resistant clones of strain 35218m led to the identification of a functionally uncharacterized TetR regulator, EefR. The regulator represses its own expression and that of four neighboring genes forming the operon, encoding components of a tripartite RND-efflux pump (EefABC) and a putative MFS-type exporter (EefD). Overexpression of these pumps reduces the susceptibility of -deficient to SAN and structurally diverse antibiotics. The cluster, widely distributed across Enterobacteriaceae genomes, is also found on plasmids in several isolates, indicating a significant risk for the rapid spread of this multidrug resistance mechanism.

摘要

抗菌耐药性是全球健康面临的最大威胁之一。深入了解细菌进化出抵御各种应激源能力的潜在过程,对于制定有效的应对策略至关重要。本研究旨在阐明ATCC 35218(35218m)的一种缺陷菌株对血根碱(SAN)(一种源自植物源抗生素的主要成分)适应的潜在机制。对35218m菌株筛选出的耐SAN克隆进行分析,鉴定出一种功能未明确的TetR调节因子EefR。该调节因子抑制其自身以及形成操纵子的四个相邻基因的表达,这些基因编码一个三联体RND外排泵(EefABC)的组成部分和一个假定的MFS型转运蛋白(EefD)。这些泵的过表达降低了缺陷型对SAN和结构多样抗生素的敏感性。该基因簇广泛分布于肠杆菌科基因组中,在几种分离株的质粒上也有发现,表明这种多药耐药机制有迅速传播的重大风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验