Bukowiec Lainey G, Kaji Elizabeth S, Koch John A, Saniei Sami, Girod-Hoffmann Miguel M, Sinnwell Jason P, Wyles Cody C
Mayo Clinic Department of Orthopedic Surgery, 200 First St, Rochester, MN 55905, United States.
Mayo Clinic Orthopedic Surgery Artificial Intelligence Lab, 200 First St, Rochester, MN 55905, United States.
J Hip Preserv Surg. 2025 Apr 18;12(3):202-216. doi: 10.1093/jhps/hnaf020. eCollection 2025 Aug.
Morphological hip abnormalities (MHAs) significantly influence lifelong prognosis of the hip, contributing to early-onset osteoarthritis and impaired functionality. Developmental dysplasia of the hip (DDH) and femoroacetabular impingement (FAI) represent key pathologies, resulting from insufficient or excessive femoral head coverage, respectively. These abnormalities alter hip biomechanics, leading to structural damage, pain, and accelerated joint degeneration. Advances in genetic research have illuminated the interplay between genetics and mechanical loading in shaping hip morphology. Genes associated with osteoarthritis, DDH, and FAI include , and . Genes associated with FAI and osteoarthritis include . Genes associated with DDH and osteoarthritis include , , and . The mechanisms linking morphological derangements to symptomatic osteoarthritis remain incompletely understood. Multimodal approaches integrating imaging, biomechanics, and genetics may uncover distinct disease subtypes, enabling personalized interventions. Early detection of MHAs is critical in preventing early-onset osteoarthritis. Incorporating advanced imaging techniques, such as statistical shape modelling, can enhance the understanding of complex 3D hip morphologies and their progression to osteoarthritis. Future research should explore the genetic underpinnings of other morphologic hip conditions, including Slipped Capital Femoral Epiphysis and Legg-Calvé-Perthes disease, to refine preventive and therapeutic strategies. A comprehensive approach combining genetics, imaging, and clinical insights holds promise for mitigating the lifelong impact of MHAs.
髋关节形态异常(MHA)显著影响髋关节的终身预后,导致早发性骨关节炎和功能受损。发育性髋关节发育不良(DDH)和股骨髋臼撞击症(FAI)是关键病理情况,分别由股骨头覆盖不足或过度引起。这些异常改变了髋关节生物力学,导致结构损伤、疼痛和关节退变加速。遗传学研究的进展揭示了遗传学与机械负荷在塑造髋关节形态方面的相互作用。与骨关节炎、DDH和FAI相关的基因包括 ,以及 。与FAI和骨关节炎相关的基因包括 。与DDH和骨关节炎相关的基因包括 、 以及 。将形态紊乱与症状性骨关节炎联系起来的机制仍未完全明了。整合影像学、生物力学和遗传学的多模式方法可能会发现不同的疾病亚型,从而实现个性化干预。早期发现MHA对于预防早发性骨关节炎至关重要。纳入先进的成像技术,如统计形状建模,可以增强对复杂三维髋关节形态及其向骨关节炎进展的理解。未来的研究应探索其他髋关节形态异常情况的遗传基础,包括股骨头骨骺滑脱和Legg-Calvé-Perthes病,以完善预防和治疗策略。结合遗传学、影像学和临床见解的综合方法有望减轻MHA的终身影响。