O'Reilly David, Shaw William, Hilt Pauline, de Castro Aguiar Rafael, Astill Sarah L, Delis Ioannis
School of Biomedical Sciences, University of Leeds, Leeds, UK.
INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences Du Sport, F-21000 Dijon, France.
iScience. 2024 Dec 16;28(1):111613. doi: 10.1016/j.isci.2024.111613. eCollection 2025 Jan 17.
The muscle synergy concept suggests that the human motor system is organized into functional modules composed of muscles "" toward common task goals. This study offers a nuanced computational perspective to muscle synergies, where muscles interacting across multiple scales have functionally similar, complementary, and independent roles. Making this viewpoint implicit to a methodological approach applying Partial Information Decomposition to large-scale muscle activations, we unveiled nested networks of functionally diverse inter- and intramuscular interactions with distinct functional consequences on task performance. The effectiveness of this approach is demonstrated using simulations and by extracting generalizable muscle networks from benchmark datasets of muscle activity. Specific network components are shown to correlate with (1) balance performance and (2) differences in motor variability between young and older adults. By aligning muscle synergy analysis with leading theoretical insights on movement modularity, the mechanistic insights presented here suggest the proposed methodology offers enhanced research opportunities toward health and engineering applications.
肌肉协同概念表明,人类运动系统被组织成由肌肉组成的功能模块,这些模块朝着共同的任务目标协同工作。本研究为肌肉协同提供了一个细致入微的计算视角,其中跨多个尺度相互作用的肌肉具有功能相似、互补和独立的作用。将这一观点隐含在一种将部分信息分解应用于大规模肌肉激活的方法中,我们揭示了功能多样的肌间和肌内相互作用的嵌套网络,这些网络对任务表现具有不同的功能影响。通过模拟以及从肌肉活动的基准数据集中提取可推广的肌肉网络,证明了该方法的有效性。具体的网络组件被证明与(1)平衡能力以及(2)年轻人和老年人之间运动变异性的差异相关。通过将肌肉协同分析与关于运动模块化的前沿理论见解相结合,本文提出的机制性见解表明,所提出的方法为健康和工程应用提供了更多的研究机会。