Suppr超能文献

在千兆像素组织病理学图像中分割全球肾小球硬化的问题:无边界肾小球。

The problem of segmenting global glomerulosclerosis in gigapixel histopathological images: the borderless glomeruli.

作者信息

Souza Luiz, Silva Jefferson, Mendonça Marcelo, Nathan José, Duarte Angelo, Sarder Pinaki, Dos-Santos Washington L C, Oliveira Luciano

机构信息

IVISION Lab, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.

Instituto Federal do Maranhão (IFMA), Grajaú, Maranhão, Brazil.

出版信息

BMC Nephrol. 2025 Sep 29;26(1):544. doi: 10.1186/s12882-025-04469-6.

Abstract

BACKGROUND

Accurately segmenting glomeruli in kidney whole slide images (WSIs) is essential for advancing automation in renal pathology but remains challenging in cases of global glomerulosclerosis, where Bowman’s capsule boundaries are often unclear. Conventional machine learning (ML) models perform well on normal glomeruli but struggle with sclerotic cases due to the lack of distinct structural cues. This study investigates the use of the foundation model segmentation generative pre-trained transformer (SegGPT) to address this limitation.

METHODS

We conducted experiments at both the patch and WSI levels on a private dataset to evaluate the performance of SegGPT foundation model against three non-foundation architectures, U-Net, U-Net3+, and SwinTransformer + U-Net, trained with and without fine-tuning.

RESULTS

The study revealed high segmentation performance for normal glomeruli, with non-foundation models achieving mean Dice similarity coefficient (mDice) scores of up to 0.94. For segmental sclerosis, performance was moderate, with scores reaching up to 0.73. In contrast, the segmentation of globally sclerotic glomeruli proved substantially more challenging: Models trained only on normal samples yielded mDice scores below 0.03, and even with fine-tuning on mixed datasets, WSI-level performance remained limited (mDice < 0.16). With only few annotated examples, SegGPT demonstrated markedly superior performance in this scenario, achieving up to 0.43 at the WSI level and 0.74 at the patch level. However, its performance under idealized conditions also reveals limitations in clinical generalization.

CONCLUSION

While conventional models perform well on normal and segmentally sclerotic glomeruli, their performance declines sharply in globally sclerotic cases, even with fine-tuning. SegGPT showed better generalization in these challenging scenarios, particularly at the patch level. However, its limited performance at the WSI level underscores the difficulty of translating patch-level accuracy to full-slide inference, where contextual ambiguity is greater. These results expose a persistent gap between controlled experimental setups and real-world conditions, reinforcing the need for more realistic evaluation protocols to advance clinical applicability.

摘要

背景

在肾脏全切片图像(WSIs)中准确分割肾小球对于推进肾脏病理学自动化至关重要,但在全球肾小球硬化的情况下仍然具有挑战性,因为鲍曼囊边界通常不清晰。传统机器学习(ML)模型在正常肾小球上表现良好,但由于缺乏明显的结构线索,在硬化病例中表现不佳。本研究调查了基础模型分割生成预训练变换器(SegGPT)的使用,以解决这一局限性。

方法

我们在一个私有数据集的切片和WSI级别上进行了实验,以评估SegGPT基础模型与三种非基础架构(U-Net、U-Net3+和SwinTransformer+U-Net)在有无微调情况下的性能。

结果

研究显示正常肾小球的分割性能较高,非基础模型的平均骰子相似系数(mDice)得分高达0.94。对于节段性硬化,性能中等,得分高达0.73。相比之下,全球硬化肾小球的分割被证明更具挑战性:仅在正常样本上训练的模型产生的mDice得分低于0.03,即使在混合数据集上进行微调,WSI级别的性能仍然有限(mDice<0.16)。在只有少数注释示例的情况下,SegGPT在这种情况下表现出明显优越的性能,在WSI级别达到0.43,在切片级别达到0.74。然而,其在理想化条件下的性能也揭示了临床泛化的局限性。

结论

虽然传统模型在正常和节段性硬化肾小球上表现良好,但即使经过微调,它们在全球硬化病例中的性能也会急剧下降。SegGPT在这些具有挑战性的场景中表现出更好的泛化能力,特别是在切片级别。然而,其在WSI级别的有限性能凸显了将切片级准确性转化为全切片推理的困难,因为上下文模糊性更大。这些结果揭示了受控实验设置与现实世界条件之间的持续差距,强化了需要更现实的评估方案以推进临床适用性的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/733f/12482064/29ea98d4ec6c/12882_2025_4469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验