Suppr超能文献

GNCnn:一种基于深度学习的用于肾小球硬化和肾小球肾炎特征分析的QuPath扩展。

GNCnn: A QuPath extension for glomerulosclerosis and glomerulonephritis characterization based on deep learning.

作者信息

Mateos-Aparicio-Ruiz Israel, Pedraza Anibal, Becker Jan Ulrich, Altini Nicola, Salido Jesus, Bueno Gloria

机构信息

VISILAB Group, Universidad de Castilla-La Mancha, Av. Camilo José Cela, Ciudad Real, 13071, Ciudad Real, Spain.

Institute of Pathology, University Hospital of Cologne, Cologne, Germany.

出版信息

Comput Struct Biotechnol J. 2024 Dec 10;27:35-47. doi: 10.1016/j.csbj.2024.11.049. eCollection 2025.

Abstract

The digitalization of traditional glass slide microscopy into whole slide images has opened up new opportunities for pathology, such as the application of artificial intelligence techniques. Specialized software is necessary to visualize and analyze these images. One of these applications is QuPath, a popular bioimage analysis tool. This study proposes GNCnn, the first open-source QuPath extension specifically designed for nephropathology. It integrates deep learning models to provide nephropathologists with an accessible, automatic detector and classifier of glomeruli, the basic filtering units of the kidneys. The aim is to offer nephropathologists a freely available application to measure and analyze glomeruli to identify conditions such as glomerulosclerosis and glomerulonephritis. GNCnn offers a user-friendly interface that enables nephropathologists to detect glomeruli with high accuracy (Dice coefficient of 0.807) and categorize them as either sclerotic or non-sclerotic, achieving a balanced accuracy of 98.46%. Furthermore, it facilitates the classification of non-sclerotic glomeruli into 12 commonly diagnosed types of glomerulonephritis, with a top-3 balanced accuracy of 84.41%. GNCnn provides real-time updates of results, which are available at both the glomerulus and slide levels. This allows users to complete a typical analysis task without leaving the main application, QuPath. This tool is the first to integrate the entire workflow for the assessment of glomerulonephritis directly into the nephropathologists' workspace, accelerating and supporting their diagnosis.

摘要

传统玻璃切片显微镜数字化为全切片图像,为病理学带来了新机遇,比如人工智能技术的应用。可视化和分析这些图像需要专门的软件。其中一个应用是QuPath,一款广受欢迎的生物图像分析工具。本研究提出了GNCnn,这是首个专门为肾脏病理学设计的开源QuPath扩展。它集成了深度学习模型,为肾脏病理学家提供了一个易于使用的肾小球自动检测和分类器,肾小球是肾脏的基本滤过单位。目的是为肾脏病理学家提供一个免费可用的应用程序,用于测量和分析肾小球,以识别诸如肾小球硬化和肾小球肾炎等病症。GNCnn提供了一个用户友好的界面,使肾脏病理学家能够高精度地检测肾小球(骰子系数为0.807),并将它们分类为硬化或非硬化,平衡准确率达到98.46%。此外,它有助于将非硬化性肾小球分类为12种常见诊断类型的肾小球肾炎,前3名的平衡准确率为84.41%。GNCnn提供结果的实时更新,可在肾小球和切片级别获取。这使得用户无需离开主要应用程序QuPath就能完成典型的分析任务。该工具首次将肾小球肾炎评估的整个工作流程直接集成到肾脏病理学家的工作区,加速并支持他们的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验