Freitas Iglesias Cristovao, Bolic Miodrag
School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Sci Rep. 2025 Sep 30;15(1):33832. doi: 10.1038/s41598-025-03140-2.
The optimal performance of nonlinear Kalman estimators (NKEs) depends on properly tuning five key components: process noise covariance, measurement noise covariance, initial state noise covariance, initial state conditions, and dynamic model parameters. However, the traditional auto-tuning approaches based on normalized estimation error squared or normalized innovation squared cannot efficiently estimate all NKE components because they rely on ground truth state models (usually unavailable) or on a subset of measured data used to compute the innovation errors. Furthermore, manual tuning is labor-intensive and prone to errors. In this work, we introduce an approach called batch Bayesian auto-tuning (BAT) for NKEs. This novel approach enables using all available measured data (not just those selected for generating innovation errors) during the tuning process of all NKE components. This is done by defining a comprehensive posterior distribution of all NKE components given all available measured data outside of the NKE recursive process based on the equivalence between the posterior distributions used in batch and recursive Bayesian inference. Our empirical validation on a synthetic bioprocess dataset demonstrates that BAT significantly improves the consistency and accuracy of NKE estimations compared to baseline methods. These findings indicate that BAT can effectively optimize NKE tuning, improving performance and reliability in practical applications.
非线性卡尔曼估计器(NKEs)的最优性能取决于对五个关键组件进行适当调整:过程噪声协方差、测量噪声协方差、初始状态噪声协方差、初始状态条件和动态模型参数。然而,基于归一化估计误差平方或归一化新息平方的传统自动调整方法无法有效估计所有NKE组件,因为它们依赖于真实状态模型(通常不可用)或用于计算新息误差的部分测量数据。此外,手动调整工作量大且容易出错。在这项工作中,我们为NKEs引入了一种称为批量贝叶斯自动调整(BAT)的方法。这种新颖的方法能够在所有NKE组件的调整过程中使用所有可用的测量数据(而不仅仅是那些用于生成新息误差的数据)。这是通过基于批量和递归贝叶斯推理中使用的后验分布之间的等价性,定义在NKE递归过程之外给定所有可用测量数据时所有NKE组件的综合后验分布来实现的。我们在一个合成生物过程数据集上的实证验证表明,与基线方法相比,BAT显著提高了NKE估计的一致性和准确性。这些发现表明,BAT可以有效地优化NKE调整,在实际应用中提高性能和可靠性。