Tey Kai Yuan, Hsein Lee Brian Juin, Ng Clarissa, Wong Qiu Ying, Panda Satish K, Dash Amrit, Wong Jipson, Ken Cheong Ezekiel Ze, Mehta Jodhbir S, Schmeterer Leopold, Win Khin Yadanar, Wong Damon, Ang Marcus
Singapore National Eye Centre, Singapore, Singapore.
Singapore Eye Research Institute, Singapore, Singapore.
Ophthalmol Sci. 2025 Aug 14;6(1):100914. doi: 10.1016/j.xops.2025.100914. eCollection 2026 Jan.
To evaluate the use of a deep learning network (DLN) in analyzing widefield specular microscopy (WFSM) images in eyes with Fuchs endothelial corneal dystrophy (FECD).
Cross-sectional clinical observational study.
A total of 1839 images were obtained via WFSM imaging (CEM-530, Nidek Co Ltd) performed on 155 FECD eyes. A separate data set comprising images from 50 FECD eyes and 50 control eyes (70% training, 30% validation) was used for DLN training, which was tested on 354 images from 55 eyes from varying regions (central, paracentral, and peripheral).
Images were graded based on a standardized quality score. Central images were compared with paracentral and peripheral images in terms of quality and morphometric parameters: endothelial cell density (ECD), coefficient of variation (CV), and hexagonality (HEX). A U-Net-based DLN was developed and trained using the separate data set and then tested on an external longitudinal data set (baseline and 1 month). Segmentation accuracy between DLN and manual analysis was compared using the Sørensen-Dice coefficient. Morphometric outcomes (ECD, HEX, and CV) were analyzed using paired tests.
Intergrader agreement for image quality and FECD severity; comparison of DLN-derived ECD with manual analysis.
Strong intergrader agreement was observed for both image quality (κ = 0.967, 95% confidence interval [CI]: 0.959-0.976) and FECD severity (κ = 0.891, 95% CI: 0.786-0.995). Endothelial cell density differences between paracentral/peripheral regions were significant in eyes without or with subclinical edema ( = 0.001-0.011). Deep learning network-based segmentation closely matched manual results (Dice coefficient = 0.86 ± 0.04). Central ECD values obtained via DLN were significantly higher than manual analysis (DLN: 2633.12 ± 1167.3 cells/mm vs. manual: 1728.58 ± 805.69 cells/mm, < 0.001).
This study presents a novel application of deep learning for analyzing widefield corneal endothelial images. The integration of a progression visualization tool enhances interpretability, allowing efficient autoanalysis and organization of large WFSM data sets-streamlining workflows and addressing limitations of manual interpretation.
The authors have no proprietary or commercial interest in any materials discussed in this article.
评估深度学习网络(DLN)在分析Fuchs内皮性角膜营养不良(FECD)患者的广角镜面反射显微镜(WFSM)图像中的应用。
横断面临床观察性研究。
通过对155只FECD眼睛进行WFSM成像(CEM-530,尼德克有限公司)共获得1839张图像。一个单独的数据集包含来自50只FECD眼睛和50只对照眼睛的图像(70%用于训练,30%用于验证),用于DLN训练,并在来自不同区域(中央、旁中央和周边)的55只眼睛的354张图像上进行测试。
根据标准化质量评分对图像进行分级。比较中央图像与旁中央和周边图像的质量和形态学参数:内皮细胞密度(ECD)、变异系数(CV)和六边形化率(HEX)。使用单独的数据集开发并训练了基于U-Net的DLN,然后在外部纵向数据集(基线和1个月)上进行测试。使用索伦森-戴斯系数比较DLN和手动分析之间的分割准确性。使用配对t检验分析形态学结果(ECD、HEX和CV)。
图像质量和FECD严重程度的评分者间一致性;DLN得出的ECD与手动分析的比较。
在图像质量(κ = 0.967,95%置信区间[CI]:0.959 - 0.976)和FECD严重程度(κ = 0.891,95% CI:0.786 - 0.995)方面均观察到高度的评分者间一致性。在没有或有亚临床水肿的眼睛中,旁中央/周边区域之间的内皮细胞密度差异显著(P = 0.001 - 0.011)。基于深度学习网络的分割与手动结果紧密匹配(戴斯系数 = 0.86 ± 0.04)。通过DLN获得的中央ECD值显著高于手动分析(DLN:2633.12 ± 1167.3个细胞/mm² 对比手动:1728.58 ± 805.69个细胞/mm²,P < 0.001)。
本研究展示了深度学习在分析广角角膜内皮图像方面的新应用。进展可视化工具的整合增强了可解释性,允许对大型WFSM数据集进行高效的自动分析和整理——简化工作流程并解决手动解读的局限性。
作者对本文中讨论的任何材料均无专有或商业利益。