Mozes E, McDevitt H O, Jaton J C, Sela M
J Exp Med. 1969 Dec 1;130(6):1263-78. doi: 10.1084/jem.130.6.1263.
The immune response to a synthetic polypeptide built on multichain polyproline, poly-L-(Tyr,Glu)-poly-L-Pro-poly-L-Lys [(T,G)-Pro--L], in the offspring of a cross between DBA/1 and SJL mice is under a genetic control superficially similar to the one operating for the immune response to a similar synthetic polypeptide built on multichain polyalanine, poly-L-(Tyr,Glu)-poly-D,L-Ala-poly-L-Lys [(T,G)-A--L], in the offspring of a cross between CBA and C57 mice. In both cases, the genetic control is a quantitative trait in which the major gene(s) is (are) dominant and the trait is not linked to any of the known structural genes coding for mouse immunoglobulin heavy chains. However, the genetic control of response to (T, G)-Pro--L, designated immune response-3 (Ir-3), is qualitatively different from the one operating for (T,G)-A--L [immune response-1 (Ir-1)] in that it is not linked to the histocompatibility-2 (H-2) locus. A study of the immune response to a related polypeptide built on multichain polyproline, poly-L-(Phe,Glu)-poly-L-Pro-poly-L--Lys [(Phe, G)-Pro--L], in the DBA/1 x SJL cross has shown a genetic control of antibody specificity. F(1) x DBA/1 backcross anti-(Phe, G)-Pro--L sera segregate in their ability to bind (T,G)-Pro--L, and there is no linkage of anti-(T,G)-Pro--L binding capacity with the H-2(s) allele of the SJL grandparent. F(1) x SJL anti-(Phe, G)-Pro-L sera segregate in their capacity to bind poly-L-(Phe,Glu)-poly-D,L-Ala-poly-L-Lys [(Phe, G)-A--L] and the ability to bind (Phe, G)-A--L is clearly linked to the H-2(q) allele from the DBA/1 grandparent. Thus, in mice all responding well to a given antigen [(Phe, G)-Pro--L], the specificity of the antibodies produced [i.e., anti-(Phe,G) or anti-prolyl] is genetically determined. Cross-inhibition of binding m (DBA/1 x SJL)F(1) anti-(Phe,G)-Pro--L antisera indicates that the anti-(Phe,G) and anti-prolyl specificities are a function of two separate and largely non-crossreacting antibody populations.
对基于多链聚脯氨酸构建的合成多肽聚-L-(酪氨酸,谷氨酸)-聚-L-脯氨酸-聚-L-赖氨酸[(T,G)-Pro-L]的免疫反应,在DBA/1和SJL小鼠杂交后代中受到的遗传控制,表面上类似于在CBA和C57小鼠杂交后代中对基于多链聚丙氨酸构建的类似合成多肽聚-L-(酪氨酸,谷氨酸)-聚-D,L-丙氨酸-聚-L-赖氨酸[(T,G)-A-L]的免疫反应所起作用的遗传控制。在这两种情况下,遗传控制都是一种数量性状,其中主要基因是显性的,且该性状与任何已知的编码小鼠免疫球蛋白重链的结构基因均无关联。然而,对(T,G)-Pro-L的反应的遗传控制,称为免疫反应-3(Ir-3),在性质上不同于对(T,G)-A-L[免疫反应-1(Ir-1)]所起作用的遗传控制,因为它与组织相容性-2(H-2)位点没有联系。对DBA/1×SJL杂交后代中基于多链聚脯氨酸构建的相关多肽聚-L-(苯丙氨酸,谷氨酸)-聚-L-脯氨酸-聚-L-赖氨酸[(Phe,G)-Pro-L]的免疫反应的研究表明了抗体特异性的遗传控制。F(1)×DBA/1回交抗-(Phe,G)-Pro-L血清在结合(T,G)-Pro-L的能力上出现分离,并且抗-(T,G)-Pro-L结合能力与SJL祖代的H-2(s)等位基因没有联系。F(1)×SJL抗-(Phe,G)-Pro-L血清在结合聚-L-(苯丙氨酸,谷氨酸)-聚-D,L-丙氨酸-聚-L-赖氨酸[(Phe,G)-A-L]的能力上出现分离,并且结合(Phe,G)-A-L的能力明显与来自DBA/1祖代的H-2(q)等位基因相关联。因此,在对给定抗原[(Phe,G)-Pro-L]均有良好反应的小鼠中,所产生抗体的特异性[即抗-(Phe,G)或抗脯氨酰]是由遗传决定的。(DBA/1×SJL)F(1)抗-(Phe,G)-Pro-L抗血清结合的交叉抑制表明,抗-(Phe,G)和抗脯氨酰特异性是两个独立且基本不发生交叉反应的抗体群体的功能。