Suppr超能文献

用噬菌体GA-1 DNA对枯草芽孢杆菌进行蛋白酶敏感型转染:一个可能的异源转染案例。

Protease-sensitive transfection of Bacillus subtilis with bacteriophage GA-1 DNA: a probable case of heterologous transfection.

作者信息

Arwert F, Venema G

出版信息

J Virol. 1974 Mar;13(3):584-9. doi: 10.1128/JVI.13.3.584-589.1974.

Abstract

The host bacterium of bacteriophage GA-1, Bacillus sp. G1R, was compared with respect to its taxonomic relationship to Bacillus subtilis, B. licheniformis, and B. pumilis. The physiological-biochemical properties of Bacillus sp. G1R are equal to those of B. licheniformis, but the thermal denaturation midpoint of G1R DNA differs by 3 C and the buoyant density by 0.005 g/cm(3) from that of B. licheniformis. Transformation with G1R donor DNA was neither observed in B. licheniformis nor in B. subtilis-competent recipients. Bacteriophage GA-1 shows neither infectivity on B. licheniformis nor on B. subtilis. However, infection of competent B. subtilis cultures with phenol-extracted GA-1 DNA results in the production of infective GA-1 particles. The transfecting activity of GA-1 DNA is destroyed by treatment with proteolytic enzymes. Resistance of transfecting DNA to inactivation by trypsin develops earlier than that to inactivation by DNase. Protease-treated GA-1 DNA competes with transforming DNA to approximately the same extent as does untreated GA-1 DNA, suggesting that uptake of GA-1 DNA is not affected by protease treatment. CsCl density gradient centrifugation reveals that the density of trypsinized GA-1 DNA is 0.004 g/cm(3) greater than that of untreated DNA.

摘要

噬菌体GA - 1的宿主细菌芽孢杆菌属G1R,就其与枯草芽孢杆菌、地衣芽孢杆菌和短小芽孢杆菌的分类关系进行了比较。芽孢杆菌属G1R的生理生化特性与地衣芽孢杆菌相同,但G1R DNA的热变性中点与地衣芽孢杆菌相差3℃,浮力密度相差0.005 g/cm³。在地衣芽孢杆菌和枯草芽孢杆菌感受态受体中均未观察到用G1R供体DNA进行的转化。噬菌体GA - 1对地衣芽孢杆菌和枯草芽孢杆菌均无感染性。然而,用酚提取的GA - 1 DNA感染枯草芽孢杆菌感受态培养物会导致产生有感染性的GA - 1颗粒。GA - 1 DNA的转染活性经蛋白水解酶处理后被破坏。转染DNA对胰蛋白酶失活的抗性比对DNA酶失活的抗性出现得更早。经蛋白酶处理的GA - 1 DNA与转化DNA的竞争程度与未处理的GA - 1 DNA大致相同,这表明GA - 1 DNA的摄取不受蛋白酶处理的影响。氯化铯密度梯度离心显示,经胰蛋白酶处理的GA - 1 DNA的密度比未处理的DNA高0.004 g/cm³。

相似文献

2
Bacteriophage transformation of PBS2 in Bacillus subtilis.
J Virol. 1975 Jan;15(1):16-21. doi: 10.1128/JVI.15.1.16-21.1975.
3
Transfecting deoxyribonucleic acid of Bacillus bacteriophage phi 29 that is protease sensitive.
Proc Natl Acad Sci U S A. 1972 Jun;69(6):1555-9. doi: 10.1073/pnas.69.6.1555.
5
Structure of Bacillus subtilis bacteriophage phi25 and phi25 deoxyribonucleic acid.
J Virol. 1970 Jul;6(1):107-13. doi: 10.1128/JVI.6.1.107-113.1970.
6
Effect of lysogeny on transfection and transfection enhancement in Bacillus subtilis.
J Bacteriol. 1975 Jan;121(1):305-12. doi: 10.1128/jb.121.1.305-312.1975.
8
Cotransduction and cotransformation of genetic markers in Bacillus subtilis and Bacillus licheniformis.
J Bacteriol. 1969 Nov;100(2):1027-36. doi: 10.1128/jb.100.2.1027-1036.1969.
9
INCORPORATION OF BACTERIOPHAGE GENOME BY SPORES OF BACILLUS SUBTILIS.
J Bacteriol. 1964 Jun;87(6):1499-502. doi: 10.1128/jb.87.6.1499-1502.1964.

引用本文的文献

1
In vivo DNA binding of bacteriophage GA-1 protein p6.
J Bacteriol. 2007 Nov;189(22):8024-33. doi: 10.1128/JB.01047-07. Epub 2007 Sep 14.
2
Analysis of early promoters of the Bacillus bacteriophage GA-1.
J Bacteriol. 2001 Dec;183(23):6965-70. doi: 10.1128/JB.183.23.6965-6970.2001.
3
Phi29 family of phages.
Microbiol Mol Biol Rev. 2001 Jun;65(2):261-87 ; second page, table of contents. doi: 10.1128/MMBR.65.2.261-287.2001.
4
Differential functional behavior of viral phi29, Nf and GA-1 SSB proteins.
Nucleic Acids Res. 2000 May 15;28(10):2034-42. doi: 10.1093/nar/28.10.2034.
5
Terminal proteins and short inverted terminal repeats of the small Bacillus bacteriophage genomes.
Proc Natl Acad Sci U S A. 1981 Apr;78(4):2596-600. doi: 10.1073/pnas.78.4.2596.
6
Protease-sensitive transfection of Streptococcus pneumoniae with bacteriophage Cp-1 DNA.
J Virol. 1983 Dec;48(3):721-30. doi: 10.1128/JVI.48.3.721-730.1983.
7
Physical arrangement of suppressor-sensitive mutations of Bacillus phage M2.
Mol Gen Genet. 1981;184(2):180-2. doi: 10.1007/BF00272902.
8
DNA-protein complex in circular DNA from Bacillus bacteriophage GA-1.
J Virol. 1976 May;18(2):783-4. doi: 10.1128/JVI.18.2.783-784.1976.
9
Bacteriophages of Bacillus subtilis.
Bacteriol Rev. 1975 Sep;39(3):257-315. doi: 10.1128/br.39.3.257-315.1975.
10
Bacteriophage phi29 terminal protein: its association with the 5' termini of the phi29 genome.
J Virol. 1978 Dec;28(3):895-904. doi: 10.1128/JVI.28.3.895-904.1978.

本文引用的文献

1
Characterization of Temperate Bacillus Bacteriophage phi105.
J Virol. 1969 Sep;4(3):264-70. doi: 10.1128/JVI.4.3.264-270.1969.
2
TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE.
Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8. doi: 10.1073/pnas.44.10.1072.
3
Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl.
J Mol Biol. 1962 Jun;4:430-43. doi: 10.1016/s0022-2836(62)80100-4.
5
BACTERIOPHAGE DEOXYRIBONUCLEATE INFECTION OF COMPETENT BACILLUS SUBTILIS.
J Bacteriol. 1965 Mar;89(3):782-90. doi: 10.1128/jb.89.3.782-790.1965.
6
CONFIGURATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID DURING ENTRY INTO BACILLUS SUBTILIS.
J Bacteriol. 1965 Feb;89(2):288-93. doi: 10.1128/jb.89.2.288-293.1965.
7
POLYOMA VIRUS: PRODUCTION IN BACILLUS SUBTILIS.
Science. 1964 Nov 6;146(3645):778-9. doi: 10.1126/science.146.3645.778.
8
TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES.
J Bacteriol. 1963 Sep;86(3):452-61. doi: 10.1128/jb.86.3.452-461.1963.
9
Factors affecting transformation of Bacillus licheniformis.
J Bacteriol. 1966 Mar;91(3):1012-20. doi: 10.1128/jb.91.3.1012-1020.1966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验