Suppr超能文献

对脱氧核糖核酸的熔点、浮力密度和化学碱基组成之间关联的重新审视。

Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid.

作者信息

De Ley J

出版信息

J Bacteriol. 1970 Mar;101(3):738-54. doi: 10.1128/jb.101.3.738-754.1970.

Abstract

The equations currently used for the calculation of the chemical base composition of deoxyribonucleic acid (DNA), expressed as moles per cent guanine plus cytosine (% GC), from either buoyant density (rho) or midpoint of thermal denaturation (T(m)) were recalculated by using only sets of data on DNA determined with the same strains. All available information from the literature was screened and supplemented by unpublished data. The results were calculated by regression and correlation analysis and treated statistically. From the data on 96 strains of bacteria, it was calculated that% GC = 2.44 (T(m) - 69.4). T(m) appears to be unaffected by the substitution of cytosine by hydroxymethylcytosine. This equation is also valid for nonbacterial DNA. From the data on 84 strains of bacteria, the relation% GC = 1038.47 (-1.6616) was calculated. The constants in this equation are slightly modified when data on nonbacterial DNA are included. Both correlations differ only slightly from those currently used, but now they lean on a statistically sound basis. As a control, the relation between rho and T(m) was calculated from data of 197 strains; it agrees excellently with the above two equations.

摘要

目前用于根据浮力密度(ρ)或热变性中点(T(m))计算脱氧核糖核酸(DNA)化学碱基组成(以鸟嘌呤加胞嘧啶的摩尔百分比表示,即%GC)的公式,仅使用相同菌株测定的DNA数据集重新进行了计算。对文献中的所有可用信息进行了筛选,并补充了未发表的数据。通过回归和相关分析计算结果并进行统计处理。根据96株细菌的数据计算得出%GC = 2.44(T(m) - 69.4)。T(m)似乎不受羟甲基胞嘧啶取代胞嘧啶的影响。该公式对非细菌DNA也有效。根据84株细菌的数据计算得出%GC = 1038.47(-1.6616)。当纳入非细菌DNA的数据时,该公式中的常数会略有修改。这两种相关性与目前使用的相关性仅略有不同,但现在它们基于统计学上可靠的基础。作为对照,根据197株的数据计算了ρ与T(m)之间的关系;它与上述两个公式非常吻合。

相似文献

2
Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid.
J Bacteriol. 1970 Feb;101(2):333-8. doi: 10.1128/jb.101.2.333-338.1970.
4
Deoxyribonucleic acid characterization of Bdellovibrios.
J Bacteriol. 1969 Nov;100(2):786-90. doi: 10.1128/jb.100.2.786-790.1969.
5
Deoxyribonucleic acid base composition of the genus Lactobacillus.
J Bacteriol. 1968 Sep;96(3):580-8. doi: 10.1128/jb.96.3.580-588.1968.
7
Application of CE for determination of DNA base composition.
Electrophoresis. 2007 Feb;28(3):366-72. doi: 10.1002/elps.200600318.
8
Deoxyribonucleic acid base composition and homology studies of Leptospira.
J Bacteriol. 1969 May;98(2):421-8. doi: 10.1128/jb.98.2.421-428.1969.
9
Deoxyribonucleic acid base composition in yeasts.
J Bacteriol. 1969 Jan;97(1):52-6. doi: 10.1128/jb.97.1.52-56.1969.
10
Guanine plus cytosine contents of the deoxyribonucleic acids of some sulfate-reducing bacteria: a reassessment.
J Bacteriol. 1972 Mar;109(3):1298-300. doi: 10.1128/jb.109.3.1298-1300.1972.

引用本文的文献

2
VICTOR: genome-based phylogeny and classification of prokaryotic viruses.
Bioinformatics. 2017 Nov 1;33(21):3396-3404. doi: 10.1093/bioinformatics/btx440.
3
A high amount of satellite DNA in the genome of Lupinus angustifolius L.
Planta. 1982 Aug;155(3):238-43. doi: 10.1007/BF00392722.
5
Pelagibacterium nitratireducens sp.nov., a marine Alphaproteobacterium isolated from the East China Sea.
Curr Microbiol. 2013 May;66(5):450-5. doi: 10.1007/s00284-012-0299-9. Epub 2013 Jan 9.
6
Pseudacidovorax intermedius NH-1, a novel marine nitrogen-fixing bacterium isolated from the South China Sea.
World J Microbiol Biotechnol. 2012 Sep;28(9):2839-47. doi: 10.1007/s11274-012-1093-3. Epub 2012 Jun 6.
8
An asymbiotic nitrogen-fixing bacterium from the root environment of corn.
Proc Natl Acad Sci U S A. 1972 Nov;69(11):3474-8. doi: 10.1073/pnas.69.11.3474.
9
Spore-forming thermophilic sulfate-reducing bacteria isolated from north sea oil field waters.
Appl Environ Microbiol. 1991 Aug;57(8):2302-7. doi: 10.1128/aem.57.8.2302-2307.1991.
10
Streptomyces thermoautotrophicus sp. nov., a Thermophilic CO- and H(2)-Oxidizing Obligate Chemolithoautotroph.
Appl Environ Microbiol. 1990 Dec;56(12):3727-34. doi: 10.1128/aem.56.12.3727-3734.1990.

本文引用的文献

1
The deoxyribonucleic acid of Micrococcus radiodurans.
Biochem J. 1966 Dec;101(3):647-50. doi: 10.1042/bj1010647.
2
Deoxyribonucleic Acid Base Composition of Desulfotomaculum nigrificans.
J Bacteriol. 1966 Aug;92(2):515. doi: 10.1128/jb.92.2.515-515.1966.
3
Deoxyribonucleic Acid of the blue-green algae (cyanophyta).
Bacteriol Rev. 1967 Dec;31(4):315-31. doi: 10.1128/br.31.4.315-331.1967.
4
The composition of some microbial deoxypentose nucleic acids.
Biochem J. 1951 Jul;49(2):144-8. doi: 10.1042/bj0490144.
5
The purine and pyrimidine composition of deoxypentose nucleic acids.
Biochem J. 1951 May;48(5):584-90. doi: 10.1042/bj0480584.
6
The formation of hybrid DNA molecules and their use in studies of DNA homologies.
J Mol Biol. 1961 Oct;3:595-617. doi: 10.1016/s0022-2836(61)80024-7.
7
Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl.
J Mol Biol. 1962 Jun;4:430-43. doi: 10.1016/s0022-2836(62)80100-4.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验