Garab G I, Paillotin G, Joliot P
Biochim Biophys Acta. 1979 Mar 15;545(3):445-53. doi: 10.1016/0005-2728(79)90153-1.
Flash-induced transients in light scattering were shown to occur with Chlorella cells. The kinetic and spectral patterns of the scattering transients and their relation to the absorption changes studied in the 10 microseconds--5 s time range, between 450 and 540 nm. 1. The kinetics of the fast changes (less than 500 ms) in scattering and absorbance were identical. From about 500 ms divergence of the two signals was observed. 2. The transient spectrum characterizing the fast scattering changes exhibited a large double band between 480 and 500 nm. Transients corresponding to the slower changes resembled the steady scattering spectrum (Latimer, P. and Rabinowitch, E. (1959) Arch. Biochem. Biophys. 84, 428--441) with a maximum at about 515 nm. 3. From theoretical considerations it is suggested that fast transients in scattering and absorbance are physically interrelated, and as has been shown for absorption changes (Witt, H.T. (1971) Q. Rev. Biophys. 4, 365--477) fast scattering transients can also be interpreted as an electrochromic phenomenon. Slower changes are accounted for by alterations in the microenvironment and conformation of the particles responsible for scattering.
已证明小球藻细胞会出现光诱导的光散射瞬变现象。在450至540纳米波长范围内,研究了10微秒至5秒时间范围内散射瞬变的动力学和光谱模式及其与吸收变化的关系。1. 散射和吸光度快速变化(小于500毫秒)的动力学是相同的。从大约500毫秒起,观察到两个信号出现分歧。2. 表征快速散射变化的瞬态光谱在480至500纳米之间呈现出一个大的双峰。对应于较慢变化的瞬态类似于稳定散射光谱(拉蒂默,P. 和拉宾诺维奇,E.(1959年)《生物化学与生物物理学文献》84卷,428 - 441页),其最大值在约515纳米处。3. 从理论考虑推测,散射和吸光度的快速瞬变在物理上是相互关联的,并且正如吸收变化所显示的那样(维特,H.T.(1971年)《生物物理学季刊评论》4卷,365 - 477页),快速散射瞬变也可被解释为一种电致变色现象。较慢的变化是由负责散射的颗粒的微环境和构象变化所导致的。