Suppr超能文献

延髓腹侧面局部温度变化引起的中枢化学感受器输入的分级变化。

Graded changes in central chemoceptor input by local temperature changes on the ventral surface of medulla.

作者信息

Cherniack N S, von Euler C, Homma I, Kao F F

出版信息

J Physiol. 1979 Feb;287:191-211. doi: 10.1113/jphysiol.1979.sp012654.

Abstract
  1. In cats under pentobarbitone anaesthesia the effects of focal temperature changes of the ;chemoceptive' areas on the ventral surface of medulla, described by Loeschcke and his associates, were studied with respect to tidal volume, V(T), tidal variation in efferent phrenic activity, Phr(T), and respiratory rate. The cats were either paralysed and ventilated at various constant P(A,CO2) and P(a,O2) levels, or breathing spontaneously.2. It was confirmed that focal bilateral cooling of the intermediate, ;I((S))', areas caused rapid depression of respiration even at constant artificial ventilation. In normocapnic and normoxic conditions apnoea usually ensued at brain surface temperatures of 20-22 degrees C.3. The effects were graded along continuous temperature-response curves with enhancements of ventilation above and depression below normal body temperature.4. The strongest effects on V(T) and Phr(T) were obtained from the I((S)) areas with no or only small effects on inspiratory or expiratory timing in the vagotomized animal. The Hering-Breuer inflation reflex and its effects on timing and amplitudes were not affected by cooling this area.5. Focal cooling of the caudal or the rostral ;chemoceptive' areas, ;C((L))' and ;R((M))' areas, caused smaller effects on V(T) and Phr(T) but produced significant effects on respiratory rate even after vagotomy.6. The effects of focal cooling of these areas could be mimicked by topical application of procaine solution which has been shown not to penetrate deeper than 100 mum from the surface.7. Moderate focal cooling of area I((S)) to temperatures above 28-30 degrees C caused a parallel shift in the CO(2)-response (V(T), Phr(T)) curves to the right with little change in slope. The P(CO2) thresholds for apnoea were correspondingly raised. These focal temperature effects could be compensated by changes in P(CO2) with, on the average, 2.7 torr/ degrees C. Focal temperatures below 28 degrees C usually caused some decrease in slope of the CO(2)-response curves in addition to further shifts.8. Added hypoxic stimulus or electrical stimulation of the carotid sinus nerves caused an almost parallel increase of Phr(T) at all P(CO2) levels and all focal temperatures suggesting an additive type of interaction between the input from the peripheral chemoreceptors and that from the central (CO(2), H(+)) sensing structures whether the latter was altered by changing P(CO2) or by focal temperature changes on the I((S)) areas.9. In contrast to these effects of hypoxia and stimulation of the carotid sinus nerves the reflex increase of inspiratory activity caused by lung deflation or by electrical stimulation of the glossopharyngeal nerve distal to the carotid sinus nerves was CO(2) dependent. These reflex effects decreased with focal cooling of the I((S)) areas as with hypocapnia, suggesting a mainly multiplicative or ;gain-changing' type of interaction with the central chemoceptive drive.10. The close similarities in effect of focal cooling and of hypocapnia on the different respiratory parameters even during constant artificial ventilation indicate that focal temperature changes of the I((S)) areas intervene effectively with the normal ventilatory response to CO(2) without changing the chemical or physical environment of those neural structures in the brain stem which set respiratory pattern.
摘要
  1. 在戊巴比妥麻醉的猫身上,针对潮气量V(T)、膈神经传出活动的潮气量变化Phr(T)和呼吸频率,研究了延髓腹面“化学感受”区域的局部温度变化(如Loeschcke及其同事所描述的)的影响。这些猫要么在不同的恒定动脉血二氧化碳分压(P(A,CO2))和动脉血氧分压(P(a,O2))水平下进行麻痹和通气,要么自主呼吸。

  2. 已证实,即使在恒定人工通气的情况下,中间的“I((S))”区域的双侧局部冷却也会导致呼吸迅速抑制。在正常碳酸血症和正常氧合条件下,当脑表面温度为20 - 22摄氏度时通常会出现呼吸暂停。

  3. 这些影响沿着连续的温度 - 反应曲线分级,体温高于正常时通气增强,低于正常时通气抑制。

  4. 对V(T)和Phr(T)影响最强的是I((S))区域,对切断迷走神经的动物的吸气或呼气时间没有或只有很小的影响。黑林 - 布雷尔充气反射及其对时间和幅度的影响不受该区域冷却的影响。

  5. 尾侧或头侧“化学感受”区域“C((L))”和“R((M))”区域的局部冷却对V(T)和Phr(T)的影响较小,但即使在切断迷走神经后对呼吸频率也有显著影响。

  6. 这些区域的局部冷却效应可以通过局部应用普鲁卡因溶液来模拟,已表明该溶液从表面渗透不超过100微米。

  7. 将I((S))区域适度局部冷却至28 - 30摄氏度以上的温度会使二氧化碳反应(V(T),Phr(T))曲线平行向右移动,斜率变化很小。呼吸暂停的二氧化碳分压阈值相应升高。这些局部温度效应可以通过二氧化碳分压的变化来补偿,平均每摄氏度为2.7托。低于28摄氏度的局部温度通常除了进一步移动外,还会导致二氧化碳反应曲线斜率有所下降。

  8. 添加低氧刺激或电刺激颈动脉窦神经会导致在所有二氧化碳分压水平和所有局部温度下Phr(T)几乎平行增加,这表明外周化学感受器的输入与中枢(二氧化碳、氢离子)传感结构的输入之间存在相加类型的相互作用,无论后者是通过改变二氧化碳分压还是通过I((S))区域的局部温度变化而改变。

  9. 与低氧和刺激颈动脉窦神经的这些效应相反,肺萎陷或电刺激颈动脉窦神经远端的舌咽神经所引起的吸气活动反射性增加是依赖二氧化碳的。这些反射效应随着I((S))区域的局部冷却而降低,如同低碳酸血症时一样,这表明与中枢化学感受驱动主要存在相乘或“增益改变”类型的相互作用。

  10. 即使在恒定人工通气期间,局部冷却和低碳酸血症对不同呼吸参数的影响非常相似,这表明I((S))区域的局部温度变化有效地干预了对二氧化碳的正常通气反应,而没有改变脑干中设定呼吸模式的那些神经结构的化学或物理环境。

相似文献

1
延髓腹侧面局部温度变化引起的中枢化学感受器输入的分级变化。
J Physiol. 1979 Feb;287:191-211. doi: 10.1113/jphysiol.1979.sp012654.
2
猫延髓腹侧化学感受器刺激和冷却过程中的神经呼吸与循环相互作用
J Physiol. 1986 Jan;370:217-31. doi: 10.1113/jphysiol.1986.sp015931.
3
延髓I区冷却对化学感受器输入引起的呼吸反应的影响。
Respir Physiol. 1982 Jul;49(1):23-39. doi: 10.1016/0034-5687(82)90101-3.
4
高碳酸血症和低氧血症对去大脑猫长吸式呼吸模式的差异性改变。
J Physiol. 1979 Feb;287:467-91. doi: 10.1113/jphysiol.1979.sp012671.
5
延髓头端区域分级局灶性冷阻断的作用
Acta Physiol Scand. 1985 Jul;124(3):329-40. doi: 10.1111/j.1748-1716.1985.tb07668.x.
6
分级局灶性冷阻断对猫延髓孤束核和疑核旁区的影响。
Acta Physiol Scand. 1985 Jul;124(3):317-28. doi: 10.1111/j.1748-1716.1985.tb07667.x.
7
延髓腹侧面局部温度变化导致的中枢化学感受器输入的分级变化的一些影响。
Adv Exp Med Biol. 1978;99:397-402. doi: 10.1007/978-1-4613-4009-6_42.
8
延髓腹侧面参与2,4-二硝基苯酚诱导的呼吸反应。
J Appl Physiol (1985). 1989 Feb;66(2):598-605. doi: 10.1152/jappl.1989.66.2.598.
9
中枢吸气活动是否是交感神经放电二氧化碳依赖性驱动的原因?
J Auton Nerv Syst. 1981 Apr;3(2-4):401-20. doi: 10.1016/0165-1838(81)90078-3.
10
Ventral medullary surface inputs to cervical sympathetic respiratory oscillations.
Am J Physiol. 1987 Jun;252(6 Pt 2):R1032-8. doi: 10.1152/ajpregu.1987.252.6.R1032.

引用本文的文献

1
延髓后包钦格复合体中化学感受神经元的功能丧失:我们从中了解到了什么?
Respir Physiol Neurobiol. 2024 Apr;322:104217. doi: 10.1016/j.resp.2024.104217. Epub 2024 Jan 17.
3
热应激不会增强预晕厥下体负压通气反应。
Exp Physiol. 2013 Jul;98(7):1156-63. doi: 10.1113/expphysiol.2013.072082. Epub 2013 Apr 12.
4
乳酸阈预测计时赛表现:热适应的影响。
J Appl Physiol (1985). 2011 Jul;111(1):221-7. doi: 10.1152/japplphysiol.00334.2011. Epub 2011 Apr 28.
5
在核心温度正常的情况下进行轻度运动时,皮肤温度对人体通气对二氧化碳过度通气的反应没有影响。
Eur J Appl Physiol. 2010 May;109(1):109-15. doi: 10.1007/s00421-010-1352-7. Epub 2010 Jan 20.
6
大鼠前包钦格复合体消融后出现的短暂性、可逆性呼吸暂停。
J Physiol. 1999 Oct 1;520 Pt 1(Pt 1):303-14. doi: 10.1111/j.1469-7793.1999.00303.x.
7
新生负鼠离体中枢神经系统中虚构呼吸的化学感受性和胆碱能刺激
J Physiol. 1997 Jun 1;501 ( Pt 2)(Pt 2):425-37. doi: 10.1111/j.1469-7793.1997.425bn.x.
8
兴奋性氨基酸介导的大鼠延髓头端腹外侧呼吸神经元的化学反射兴奋作用。
J Physiol. 1996 Apr 15;492 ( Pt 2)(Pt 2):559-71. doi: 10.1113/jphysiol.1996.sp021329.
9
二氧化碳对成年和新生清醒大鼠在环境温度变化时代谢及通气反应的影响。
J Physiol. 1996 Feb 15;491 ( Pt 1)(Pt 1):261-9. doi: 10.1113/jphysiol.1996.sp021213.
10
成年豚鼠离体脑干中化学敏感结构的定位
J Physiol. 1995 May 15;485 ( Pt 1)(Pt 1):203-12. doi: 10.1113/jphysiol.1995.sp020724.

本文引用的文献

1
延髓中的一个热敏区域。
J Physiol. 1960 Jun;152(1):93-8. doi: 10.1113/jphysiol.1960.sp006472.
2
延髓局部加热引起的心血管和呼吸反应。
Am J Physiol. 1965 Aug;209:301-6. doi: 10.1152/ajplegacy.1965.209.2.301.
3
[First neurophysiologic applications of a method permitting reversible elective block of central structures by localized refrigeration].
Electroencephalogr Clin Neurophysiol. 1962 Oct;14:758-63. doi: 10.1016/0013-4694(62)90092-5.
4
睡眠对海平面及高原地区呼吸的低氧刺激的影响。
J Appl Physiol. 1960 Nov;15:1130-4. doi: 10.1152/jappl.1960.15.6.1130.
5
睡眠对急性和慢性缺氧时二氧化碳刺激呼吸的影响。
J Appl Physiol. 1960 Nov;15:1135-8. doi: 10.1152/jappl.1960.15.6.1135.
6
海平面和高原地区自然睡眠期间对二氧化碳的呼吸反应变化。
J Appl Physiol. 1958 Nov;13(3):325-30. doi: 10.1152/jappl.1958.13.3.325.
7
延髓化学感受器
J Physiol. 1952 Dec;118(4):545-54. doi: 10.1113/jphysiol.1952.sp004816.
8
体温在确定脊椎动物酸碱状态中的作用。
Fed Proc. 1969 May-Jun;28(3):1204-8.
9
从原本完整的窦神经和主动脉神经的少纤维标本记录传出和传入冲动活动。
J Physiol. 1971 May;215(1):33-47. doi: 10.1113/jphysiol.1971.sp009456.
10
电刺激延髓腹侧面对呼吸和循环的影响。
Respir Physiol. 1970 Sep;10(2):184-97. doi: 10.1016/0034-5687(70)90082-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验