Suppr超能文献

根癌土壤杆菌的己糖醛酸脱氢酶

Hexuronic acid dehydrogenase of Agrobacterium tumefaciens.

作者信息

Chang Y F, Feingold D S

出版信息

J Bacteriol. 1969 Sep;99(3):667-73. doi: 10.1128/jb.99.3.667-673.1969.

Abstract

Growth of Agrobacterium tumefaciens on d-glucuronic acid (GlcUA) or d-galacturonic acid (GalUA) induces formation of hexuronic acid dehydrogenase [d-aldohexuronic acid: nicotinamide adenine dinucleotide (NAD) oxidoreductase]. The dehydrogenase, which irreversibly converts GlcUA or GalUA to the corresponding hexaric acid with the concomitant reduction of NAD, but not of nicotinamide adenine dinucleotide phosphate was purified 60-fold by MnCl(2) treatment, (NH(4))(2)SO(4) fractionation, chromatography on diethylaminoethyl Sephadex and negative adsorption with Ca(3)(PO(4))(2) gel. The pH optimum is 8.0. Other uronic acids, aldohexoses, aldopentoses, and polyols, are not substrates. Reduced nicotinamide adenine dinucleotide is an inhibitor strictly competitive with NAD. Kinetic data indicate that the dehydrogenase induced by growth on GlcUA may not be identical with that induced by growth on GalUA.

摘要

根癌土壤杆菌在d-葡萄糖醛酸(GlcUA)或d-半乳糖醛酸(GalUA)上生长会诱导己糖醛酸脱氢酶[D-醛己糖醛酸:烟酰胺腺嘌呤二核苷酸(NAD)氧化还原酶]的形成。该脱氢酶能不可逆地将GlcUA或GalUA转化为相应的己二酸,同时使NAD还原,但不能使烟酰胺腺嘌呤二核苷酸磷酸还原,通过MnCl₂处理、硫酸铵分级分离、二乙氨基乙基葡聚糖凝胶柱色谱和磷酸三钙凝胶负吸附等方法将其纯化了60倍。最适pH为8.0。其他糖醛酸、己醛糖、戊醛糖和多元醇不是底物。还原型烟酰胺腺嘌呤二核苷酸是与NAD严格竞争的抑制剂。动力学数据表明,在GlcUA上生长诱导产生的脱氢酶可能与在GalUA上生长诱导产生的脱氢酶不同。

相似文献

1
Hexuronic acid dehydrogenase of Agrobacterium tumefaciens.
J Bacteriol. 1969 Sep;99(3):667-73. doi: 10.1128/jb.99.3.667-673.1969.
2
Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene.
Appl Microbiol Biotechnol. 2010 Apr;86(3):901-9. doi: 10.1007/s00253-009-2333-9. Epub 2009 Nov 17.
3
D-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens.
J Bacteriol. 1970 Apr;102(1):85-96. doi: 10.1128/jb.102.1.85-96.1970.
5
Aldohexuronic acid catabolism by a soil Aeromonas.
J Bacteriol. 1969 Jan;97(1):97-106. doi: 10.1128/jb.97.1.97-106.1969.
6
Hexopyranoside: cytochrome c oxidoreductase from Agrobacterium tumefaciens.
Eur J Biochem. 1968 Nov;6(3):331-43. doi: 10.1111/j.1432-1033.1968.tb00453.x.
7
3-Ketoglucose reductase of Agrobacterium tumefaciens.
J Bacteriol. 1973 Feb;113(2):652-7. doi: 10.1128/jb.113.2.652-657.1973.
8
Cytochrome C552 in Agrobacterium tumefaciens.
J Biochem. 1968 Jun;63(6):780-8. doi: 10.1093/oxfordjournals.jbchem.a128843.

引用本文的文献

3
6
Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate.
Appl Environ Microbiol. 2010 Jan;76(1):169-75. doi: 10.1128/AEM.02273-09. Epub 2009 Nov 6.
7
Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58.
J Bacteriol. 2009 Mar;191(5):1565-73. doi: 10.1128/JB.00586-08. Epub 2008 Dec 5.
9
D-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens.
J Bacteriol. 1970 Apr;102(1):85-96. doi: 10.1128/jb.102.1.85-96.1970.

本文引用的文献

1
Detection of sugars on paper chromatograms.
Nature. 1950 Sep 9;166(4219):444-5. doi: 10.1038/166444b0.
2
Metabolism of D-galacturonic acid by Pseudomonas syringae.
Biochim Biophys Acta. 1962 Apr 23;58:631-2. doi: 10.1016/0006-3002(62)90088-4.
4
Hexuronic dehydrogenase of Agrobacterium tumefaciens.
J Bacteriol. 1959 Nov;78(5):734-5. doi: 10.1128/jb.78.5.734-735.1959.
6
Uronate oxidation by phytopathogenic pseudomonads.
Nature. 1959 May 16;183(4672):1412-3. doi: 10.1038/1831412a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验