Suppr超能文献

产气荚膜梭菌中的冷休克致死率与损伤

Cold shock lethality and injury in Clostridium perfringens.

作者信息

Traci P A, Duncan C L

出版信息

Appl Microbiol. 1974 Nov;28(5):815-21. doi: 10.1128/am.28.5.815-821.1974.

Abstract

Several observations have been made in regard to cold shock lethality of Clostridium perfringens: (i) loss of viability was not consequence of exposure of the cells to air; (ii) stationary-phase cells were much more resistant to cold shock at 4 C than exponential-phase cells; (iii) at 4 C 96% of an initial population of exponential-phase cells was killed upon cold shock and 95% of the remaining population was killed within 90 min of continued exposure at 4 C; (iv) the minimal temperature differential for detectable cold shock lethality was between 17 and 23 C, and the maximum beyond which lethality was not appreciably increased was between 28 and 33 C. Up to 75% of viable cold-shocked cells were injured, as demonstrated by cold shocking late exponential-phase cells at 10 C and using differential plating procedure for recovery. Repair of injury was temperature dependent, and occurred in a complex medium and 0.1% peptone but not water. Nalidixic acid, chloramphenicol, and rifampin did not inhibit repair of injury.

摘要

关于产气荚膜梭菌的冷休克致死性,已有多项观察结果:(i) 细胞活力丧失并非细胞暴露于空气中的结果;(ii) 稳定期细胞比指数期细胞对4℃的冷休克更具抗性;(iii) 在4℃时,指数期细胞初始群体的96%在冷休克后死亡,其余群体的95%在继续暴露于4℃的90分钟内死亡;(iv) 可检测到冷休克致死性的最小温度差在17至23℃之间,而致死率不再明显增加的最高温度在28至33℃之间。通过在10℃对指数期后期细胞进行冷休克并使用差异平板培养法进行复苏,结果表明高达75%的存活冷休克细胞受到损伤。损伤修复取决于温度,且发生在复杂培养基和0.1%蛋白胨中,而不是水中。萘啶酸、氯霉素和利福平不抑制损伤修复。

相似文献

1
Cold shock lethality and injury in Clostridium perfringens.
Appl Microbiol. 1974 Nov;28(5):815-21. doi: 10.1128/am.28.5.815-821.1974.
2
Pressure resistance of cold-shocked Escherichia coli O157:H7 in ground beef, beef gravy and peptone water.
J Appl Microbiol. 2015 Jun;118(6):1521-9. doi: 10.1111/jam.12794. Epub 2015 Apr 8.
3
"Phoenix phenomenon" in the growth of Clostridium perfringens.
Appl Environ Microbiol. 1976 Dec;32(6):803-7. doi: 10.1128/aem.32.6.803-807.1976.
4
Effects of inhibitors of protein, RNA and DNA synthesis on heat-injured Salmonella typhimurium LT2.
J Gen Microbiol. 1976 Nov;97(1):19-27. doi: 10.1099/00221287-97-1-19.
5
Effect of antibiotics on toxin production and viability of Clostridium perfringens.
Antimicrob Agents Chemother. 1987 Feb;31(2):213-8. doi: 10.1128/AAC.31.2.213.
7
The effect of nalidixic acid, rifampicin and chloramphenicol on the synthesis of phospholipase C in Bacillus cereus.
Acta Pathol Microbiol Scand B. 1978 Feb;86(1):25-8. doi: 10.1111/j.1699-0463.1978.tb00003.x.
8
Improved medium for enumeration of Clostridium perfringens.
Appl Microbiol. 1971 Oct;22(4):688-92. doi: 10.1128/am.22.4.688-692.1971.
9
Effect of chloramphenicol, rifampicin, and nalidixic acid on Chlamydia psittaci growing in L cells.
J Infect Dis. 1973 Feb;127(2):155-63. doi: 10.1093/infdis/127.2.155.
10
Peptone induction and rifampin-insensitive collagenase production by Vibrio alginolyticus.
J Bacteriol. 1980 May;142(2):447-54. doi: 10.1128/jb.142.2.447-454.1980.

引用本文的文献

1
Structural and biochemical analyses of a Clostridium perfringens sortase D transpeptidase.
Acta Crystallogr D Biol Crystallogr. 2015 Jul;71(Pt 7):1505-13. doi: 10.1107/S1399004715009219. Epub 2015 Jun 30.
2
Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010.
Foodborne Pathog Dis. 2013 Feb;10(2):131-6. doi: 10.1089/fpd.2012.1316. Epub 2013 Feb 4.
3
Effect of chilling on the survival of Bacteroides fragilis.
J Clin Microbiol. 1976 Nov;4(5):432-6. doi: 10.1128/jcm.4.5.432-436.1976.
4
Effect of temperature on survival of Bacteroides fragilis subsp. fragilis and Escherichia coli in pus.
J Clin Microbiol. 1977 Dec;6(6):567-70. doi: 10.1128/jcm.6.6.567-570.1977.

本文引用的文献

1
Effect of chilling on Aerobacter aerogenes in aqueous suspension.
J Gen Microbiol. 1962 Dec;29:719-30. doi: 10.1099/00221287-29-4-719.
2
The effect of cold diluent on the viable count of Pseudomonas pyocyanea.
J Gen Microbiol. 1960 Apr;22:437-42. doi: 10.1099/00221287-22-2-437.
3
The effect of sudden chilling on Escherichia coli.
J Gen Microbiol. 1958 Oct;19(2):380-9. doi: 10.1099/00221287-19-2-380.
4
Repair of thermal injury of Staphylococcus aureus.
J Bacteriol. 1966 Jan;91(1):134-42. doi: 10.1128/jb.91.1.134-142.1966.
5
The effect of low temperatures of permeability in Streptomyces hydrogenans.
Biochem Biophys Res Commun. 1965 May 18;19(5):576-81. doi: 10.1016/0006-291x(65)90377-3.
6
Release of biologically active peptides from Escherichia coli at subzero temperatures.
J Bacteriol. 1966 Mar;91(3):1105-11. doi: 10.1128/jb.91.3.1105-1111.1966.
7
Ribosome synthesis in thermally shocked cells of Staphylococcus aureus.
J Bacteriol. 1972 Jan;109(1):243-9. doi: 10.1128/jb.109.1.243-249.1972.
8
Repair of injury in freeze-dried Salmonella anatum.
Appl Microbiol. 1971 Sep;22(3):401-7. doi: 10.1128/am.22.3.401-407.1971.
9
Cold shock in a mesophilic and a psychrophilic pseudomonad.
J Gen Microbiol. 1968 Mar;50(3):429-39. doi: 10.1099/00221287-50-3-429.
10
Selective release of ribonuclease-inhibitor from Bacillus subtilis cells by cold shock treatment.
Biochem Biophys Res Commun. 1967 Jan 10;26(1):75-81. doi: 10.1016/0006-291x(67)90255-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验