Power P C, Pincus H J
Science. 1974 Oct 18;186(4160):234-9. doi: 10.1126/science.186.4160.234.
Diffraction patterns that are highly reproducible, of useful quality, and consistent with the input generating them can be easily obtained with a microscope system. The input can be either a reduced photograph or a thin section. With two exceptions, the relationships between a thin section and its diffraction pattern produced by a petrographic microscope are the same as the relationships between a photographic input and its diffraction pattern produced by a conventional ODA system. The exceptions are that the diffraction patterns generated directly by the thin sections may be asymmetrical or, if the thin section is sufficiently heterogeneous, may be smeared. The microscope system is generally more useful than a conventional ODA system for the analysis of microfabric in thin sections. One can readily use the microscope system to analyze elements of widely varying spatial frequency simply by changing the objectives. The diffraction patterns can be magnified by changing to a higherpower ocular. In most cases the microscope-generated diffraction pattern transmits the useful spatial information in the thin section more completely than the conventionally produced diffraction pattern; the photographic inputs for the conventionally produced diffraction pattern emphasize lower-frequency spatial information. This property, combined with the microscope system's better response to twinning, makes the microscope more sensitive to commonly used microfabric elements. For the analysis of thin sections, a conventional ODA system is superior to the microscope system in only three cases. First, if one wants to analyze the entire thin section at one time, a conventional system must be used with a photographic input of the thin section. Second, if the thin section is extremely heterogeneous (crystallographically or mineralogically), the microscope-generated diffraction pattern may exhibit gross smearing even with the highestpower objectives available. Finally, the thin section may contain only elements of low spatial frequency that will not generate diffraction dots far enough radially from the central spot to be resolvable. More study will be needed to establish the precision of spatial frequency measurements from diffraction patterns generated directly by thin sections with the microscope system. Experiments with a variety of film types and sources of illumination will, in all likelihood, lead to a reduction in the exposure times used to record diffraction patterns with the microscope (9). A complete ODA system must have directional and frequency-filtering capabilities. In order to establish these capabilities for the microscope system, components will need to be designed and fabricated and the microscope body may have to be modified. The possibility of applying the microscope technique in reflected light on a real-time basis should be investigated. This would be a valuable tool in the quantitative analysis of microfracture initiation and propagation and the analysis of overall fabric changes during experimental deformation of rock both in situ and in the laboratory. The technique presented here can be used with a less expensive microscope, if it has a focusable Bertrand lens. Our experiments with relatively inexpensive microscopes indicated that the only major problem is alignment of the illuminating system (light-filter-condenser).
使用显微镜系统能够轻松获得高度可重复、质量良好且与生成它们的输入一致的衍射图案。输入可以是缩小的照片或薄片。除了两个例外情况,岩石显微镜产生的薄片与其衍射图案之间的关系,与传统光学衍射分析(ODA)系统产生的照片输入与其衍射图案之间的关系相同。例外情况是,由薄片直接产生的衍射图案可能不对称,或者如果薄片的成分足够不均匀,可能会模糊不清。对于薄片中的微观结构分析,显微镜系统通常比传统的ODA系统更有用。通过更换物镜,人们可以轻松地使用显微镜系统来分析空间频率差异很大的元素。通过更换为更高倍率的目镜可以放大衍射图案。在大多数情况下,显微镜产生的衍射图案比传统方法产生的衍射图案更能完整地传递薄片中有用的空间信息;传统方法产生的衍射图案的照片输入强调低频空间信息。这种特性,再加上显微镜系统对孪晶的更好响应,使得显微镜对常用的微观结构元素更敏感。对于薄片分析,传统的ODA系统仅在三种情况下优于显微镜系统。第一,如果要一次性分析整个薄片,则必须使用传统系统并输入薄片的照片。第二,如果薄片在晶体学或矿物学上极其不均匀,即使使用现有最高倍率的物镜,显微镜产生的衍射图案也可能会出现严重模糊。最后,薄片可能只包含低空间频率的元素,这些元素产生的衍射点在径向距离中心点不够远,无法分辨。需要更多的研究来确定使用显微镜系统从薄片直接产生的衍射图案进行空间频率测量的精度。使用各种胶片类型和照明源进行实验,很有可能会减少用显微镜记录衍射图案所需的曝光时间(9)。一个完整的ODA系统必须具备方向和频率滤波功能。为了给显微镜系统赋予这些功能,需要设计和制造组件,并且可能需要对显微镜主体进行改造。应该研究在反射光下实时应用显微镜技术的可能性。这将是一种在定量分析微裂缝的萌生和扩展以及原位和实验室岩石实验变形过程中整体结构变化方面非常有价值的工具。如果使用的显微镜有可聚焦的伯特兰透镜,这里介绍的技术可以用较便宜的显微镜来实现。我们使用相对便宜的显微镜进行的实验表明,唯一的主要问题是照明系统(滤光聚光器)的校准。