Rinzel J, Rall W
Biophys J. 1974 Oct;14(10):759-90. doi: 10.1016/S0006-3495(74)85948-5.
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma.
对于注入分支树突状神经元模型中单个树突分支的瞬时电流脉冲,得到了相应响应函数的数学表达式。理论模型假设膜具有被动特性以及对分支直径采用等效圆柱约束。当在卷积公式中使用该响应函数时,能够针对给定输入位置处的任意电流注入,计算树突树中任意指定点处的电压瞬变。一个特定的数值示例,针对在分支末端的短暂电流注入,展示了去极化峰值在整个神经元模型中传播时的衰减和延迟特性。与从分支输入位点到胞体的电压瞬变的严重衰减形成对比的是,实际传递到胞体和其他树突的总输入电荷量的比例经计算约为二分之一。该比例与输入时间进程无关。其他数值示例将分支末端输入位点与胞体输入位点进行了比较,结果表明,对于给定的瞬态电流注入,峰值去极化与注入位点处的输入电阻不成正比,并且对于给定的突触电导瞬变,对于分支输入位点而言,有效的突触驱动电位会显著降低,导致突触电流流动和电荷量减少。此外,对于突触情况,基于在胞体处观察到的兴奋性突触后电位(EPSP)以及传递到胞体的总电荷量对两个输入进行了比较。