Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Cell Rep. 2023 Jan 31;42(1):111943. doi: 10.1016/j.celrep.2022.111943. Epub 2023 Jan 5.
The endoplasmic reticulum (ER) is a tortuous organelle that spans throughout a cell with a continuous membrane containing ion channels, pumps, and transporters. It is unclear if stimuli that gate ER ion channels trigger substantial membrane potential fluctuations and if those fluctuations spread beyond their site of origin. Here, we visualize ER membrane potential dynamics in HEK cells and cultured rat hippocampal neurons by targeting a genetically encoded voltage indicator specifically to the ER membrane. We report the existence of clear cell-type- and stimulus-specific ER membrane potential fluctuations. In neurons, direct stimulation of ER ryanodine receptors generates depolarizations that scale linearly with stimulus strength and reach tens of millivolts. However, ER potentials do not spread beyond the site of receptor activation, exhibiting steep attenuation that is exacerbated by intracellular large conductance K channels. Thus, segments of ER can generate large depolarizations that are actively restricted from impacting nearby, contiguous membrane.
内质网(ER)是一种曲折的细胞器,其连续的膜上含有离子通道、泵和转运蛋白,贯穿整个细胞。目前尚不清楚内质网离子通道的刺激是否会引发显著的膜电位波动,以及这些波动是否会超出其起源部位传播。在这里,我们通过将一种基因编码的电压指示剂特异性靶向内质网膜,可视化了 HEK 细胞和培养的大鼠海马神经元中的 ER 膜电位动力学。我们报告了明确的细胞类型和刺激特异性 ER 膜电位波动的存在。在神经元中,直接刺激内质网ryanodine 受体产生的去极化与刺激强度呈线性关系,可达数十毫伏。然而,ER 电位不会超出受体激活部位传播,表现出陡峭的衰减,而细胞内大电导钾通道会加剧这种衰减。因此,内质网的某些部分可以产生大的去极化,但这些去极化会被主动限制,无法影响附近的连续膜。