Suppr超能文献

A core-conductor model of the cardiac Purkinje fibre based on structural analysis.

作者信息

Hellam D C, Studt J W

出版信息

J Physiol. 1974 Dec;243(3):637-60. doi: 10.1113/jphysiol.1974.sp010770.

Abstract
  1. Structural analysis of voltage clamp preparations of sheep cardiac Purkinje fibres was carried out using methods based on light and electron microscopic observations. Results demonstrate the marked structural variability in preparations that appear, outwardly, simple.2. The length of the cell aggregate was measured in vitro, and the mean area of cross-section, by light microscopic methods in serially sampled transverse sections. The number of intercellular clefts and path lengths of cell profiles distributed at the lateral surface and along clefts were determined from photomicrographs. Accuracy of these estimates was improved by obtaining, electron microscopically, values representing the degree of membrane folding in longitudinal and transverse planes.3. Cleft width was evaluated from electron micrographs. Measurements made on sections that there tilted through wide arcs with a goniometer indicate that cleft width is quite variable and, on average, somewhat greater than 400 A.4. A three-dimensional core-conductor model is presented to aid in quantitative interpretation of electrophysiological experiments. Application of the model to individual preparations requires evaluation of the length and perimeter of cross-section of cell aggregates and of the mean number, width and depth of intercellular clefts, with appropriate corrections for fine sarcolemmal folding. Methods are given for estimating these structural parameter values from measurements of external dimensions of cell aggregates.5. The core-conductor model is applied in an accompanying analysis of the linear electrical characteristics of Purkinje membrane.
摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9269/1330728/dfd36de0d5c8/jphysiol00916-0088-a.jpg

相似文献

1
A core-conductor model of the cardiac Purkinje fibre based on structural analysis.
J Physiol. 1974 Dec;243(3):637-60. doi: 10.1113/jphysiol.1974.sp010770.
2
Linear analysis of membrane conductance and capacitance in cardiac Purkinje fibres.
J Physiol. 1974 Dec;243(3):661-94. doi: 10.1113/jphysiol.1974.sp010771.
3
Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.
J Physiol. 1979 May;290(2):227-52. doi: 10.1113/jphysiol.1979.sp012769.
4
The influence of intercellular clefts on the electrical properties of sheep cardiac Purkinje fibers.
Biophys J. 1979 Feb;25(2 Pt 1):217-34. doi: 10.1016/s0006-3495(79)85287-x.
5
Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.
Biophys J. 1983 Nov;44(2):225-48. doi: 10.1016/S0006-3495(83)84295-7.
6
Cable analysis in quiescent and active sheep Purkinje fibres.
J Physiol. 1984 Jul;352:739-57. doi: 10.1113/jphysiol.1984.sp015319.
7
The ultrastructure of the cardiac Purkinje strand in the dog: a morphometric analysis.
Proc R Soc Lond B Biol Sci. 1983 Jan 22;217(1207):191-213. doi: 10.1098/rspb.1983.0006.
8
A cleft model for cardiac Purkinje strands.
Biophys J. 1981 Mar;33(3):383-408. doi: 10.1016/S0006-3495(81)84902-8.

引用本文的文献

2
Surface capacity of electrically syncytial tissues.
Biophys J. 1981 Jul;35(1):127-46. doi: 10.1016/S0006-3495(81)84779-0.
3
A cleft model for cardiac Purkinje strands.
Biophys J. 1981 Mar;33(3):383-408. doi: 10.1016/S0006-3495(81)84902-8.
4
Sheep cardiac Purkinje fibers: configurational changes during the cardiac cycle.
Cell Tissue Res. 1983;232(1):97-110. doi: 10.1007/BF00222376.
5
Actions of barium and rubidium on membrane currents in canine Purkinje fibres.
J Physiol. 1983 May;338:589-612. doi: 10.1113/jphysiol.1983.sp014691.
6
Effect of tortuous extracellular pathways on resistance measurements.
Biophys J. 1983 Apr;42(1):55-9. doi: 10.1016/S0006-3495(83)84368-9.
8
Extracellular [K+] fluctuations in voltage-clamped canine cardiac Purkinje fibers.
Biophys J. 1984 Nov;46(5):663-8. doi: 10.1016/S0006-3495(84)84065-5.
9
Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.
Biophys J. 1983 Nov;44(2):225-48. doi: 10.1016/S0006-3495(83)84295-7.
10
Induction and removal of inward-going rectification in sheep cardiac Purkinje fibres.
J Physiol. 1982 Jun;327:285-308. doi: 10.1113/jphysiol.1982.sp014232.

本文引用的文献

1
A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY.
J Cell Biol. 1965 May;25(2):407-8. doi: 10.1083/jcb.25.2.407.
3
The electrical constants of Purkinje fibres.
J Physiol. 1952 Nov;118(3):348-60. doi: 10.1113/jphysiol.1952.sp004799.
4
Hexagonal array of subunits in intercellular junctions of the mouse heart and liver.
J Cell Biol. 1967 Jun;33(3):C7-C12. doi: 10.1083/jcb.33.3.c7.
5
The time and voltage dependence of the slow outward current in cardiac Purkinje fibres.
J Physiol. 1966 Oct;186(3):632-62. doi: 10.1113/jphysiol.1966.sp008060.
6
Membrane capacity of the cardiac Purkinje fibre.
J Physiol. 1966 Jan;182(2):255-67. doi: 10.1113/jphysiol.1966.sp007823.
7
Purkinje fibers of the heart examined with the peroxidase reaction.
J Cell Biol. 1968 May;37(2):570-4. doi: 10.1083/jcb.37.2.570.
8
Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers.
J Cell Biol. 1968 Mar;36(3):497-526. doi: 10.1083/jcb.36.3.497.
9
The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres.
J Physiol. 1968 Mar;195(1):185-214. doi: 10.1113/jphysiol.1968.sp008454.
10
The structural implications of the linear electrical properties of cardiac Purkinje strands.
J Gen Physiol. 1970 Apr;55(4):524-47. doi: 10.1085/jgp.55.4.524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验