CNRS, Univ. Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, 33600, Pessac, France.
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.
Nat Commun. 2018 Jun 19;9(1):2391. doi: 10.1038/s41467-018-04825-1.
Self-sustained metabolic pathways in microcompartments are the corner-stone for living systems. From a technological viewpoint, such pathways are a mandatory prerequisite for the reliable design of artificial cells functioning out-of-equilibrium. Here we develop a microfluidic platform for the miniaturization and analysis of metabolic pathways in man-made microcompartments formed of water-in-oil droplets. In a modular approach, we integrate in the microcompartments a nicotinamide adenine dinucleotide (NAD)-dependent enzymatic reaction and a NAD-regeneration module as a minimal metabolism. We show that the microcompartments sustain a metabolically active state until the substrate is fully consumed. Reversibly, the external addition of the substrate reboots the metabolic activity of the microcompartments back to an active state. We therefore control the metabolic state of thousands of independent monodisperse microcompartments, a step of relevance for the construction of large populations of metabolically active artificial cells.
自维持的代谢途径在微隔间是生命系统的基石。从技术的角度来看,这样的途径是可靠设计在非平衡条件下工作的人工细胞的必要前提。在这里,我们开发了一种用于在由油包水液滴形成的人造微隔间中微型化和分析代谢途径的微流控平台。在模块化的方法中,我们将烟酰胺腺嘌呤二核苷酸(NAD)依赖性酶反应和 NAD 再生模块整合到微隔间中作为最小代谢物。我们表明,微隔间可以维持代谢活跃状态,直到底物完全消耗。相反,外部添加底物可以将微隔间的代谢活性重新启动到活跃状态。因此,我们可以控制数千个独立单分散微隔间的代谢状态,这是构建具有代谢活性的人工细胞的大群体的重要步骤。