Lindsley D L, Sandler L, Baker B S, Carpenter A T, Denell R E, Hall J C, Jacobs P A, Miklos G L, Davis B K, Gethmann R C, Hardy R W, Steven A H, Miller M, Nozawa H, Parry D M, Gould-Somero M, Gould-Somero M
Genetics. 1972 May;71(1):157-84. doi: 10.1093/genetics/71.1.157.
By combining elements of two Y-autosome translocations with displaced autosomal breakpoints, it is possible to produce zygotes heterozygous for a deficiency for the region between the breakpoints, and also, as a complementary product, zygotes carrying a duplication for precisely the same region. A set of Y-autosome translocations with appropriately positioned breakpoints, therefore, can in principle be used to generate a non-overlapping set of deficiencies and duplications for the entire autosomal complement.-Using this method, we have succeeded in examining segmental aneuploids for 85% of chromosomes 2 and 3 in order to assess the effects of aneuploidy and to determine the number and location of dosage-sensitive loci in the Drosophila genome (Figure 5). Combining our data with previously reported results on the synthesis of Drosophila aneuploids (see Lindsley and Grell 1968), the following generalities emerge.-1. The X chromosome contains no triplo-lethal loci, few or no haplo-lethal loci, at least seven Minute loci, one hyperploid-sensitive locus, and one locus that is both triplo-abnormal and haplo-abnormal. 2. Chromosome 2 contains no triplo-lethal loci, few or no haplo-lethal loci, at least 17 Minute loci, and at least four other haplo-abnormal loci. 3. Chromosome 3 contains one triplo-lethal locus that is also haplo-lethal, few or no other haplo-lethal loci, at least 16 Minute loci, and at least six other haplo-abnormal loci. 4. Chromosome 4 contains no triplo-lethal loci, no haplo-lethal loci, one Minute locus, and no other haplo-abnormal loci.-Thus, the Drosophila genome contains 57 loci, aneuploidy for which leads to a recognizable effect on the organism: one of these is triplo-lethal and haplo-lethal, one is triplo-abnormal and haplo-abnormal, one is hyperploid-sensitive, ten are haplo-abnormal, 41 are Minutes, and three are either haplo-lethals or Minutes. Because of the paucity of aneuploid-lethal loci, it may be concluded that the deleterious effects of aneuploidy are mostly the consequence of the additive effects of genes that are slightly sensitive to abnormal dosage. Moreover, except for the single triplo-lethal locus, the effects of hyperploidy are much less pronounced than those of the corresponding hypoploidy.
通过将两个Y - 常染色体易位的元件与移位的常染色体断点相结合,有可能产生在断点之间区域存在缺失的杂合子合子,并且作为互补产物,还能产生对完全相同区域存在重复的合子。因此,一组具有适当定位断点的Y - 常染色体易位原则上可用于为整个常染色体组产生一组不重叠的缺失和重复。利用这种方法,我们成功地检测了果蝇2号和3号染色体85%的片段非整倍体,以评估非整倍体的影响,并确定果蝇基因组中剂量敏感位点的数量和位置(图5)。将我们的数据与先前报道的关于果蝇非整倍体合成的结果相结合(见Lindsley和Grell,1968),得出以下一般性结论:1. X染色体不包含三倍体致死位点,几乎没有或没有单倍体致死位点,至少有七个微小位点,一个超倍体敏感位点,以及一个既是三倍体异常又是单倍体异常的位点。2. 2号染色体不包含三倍体致死位点,几乎没有或没有单倍体致死位点,至少有17个微小位点,以及至少四个其他单倍体异常位点。3. 3号染色体包含一个也是单倍体致死的三倍体致死位点,几乎没有或没有其他单倍体致死位点,至少有16个微小位点,以及至少六个其他单倍体异常位点。4. 4号染色体不包含三倍体致死位点,没有单倍体致死位点,一个微小位点,以及没有其他单倍体异常位点。因此,果蝇基因组包含57个位点,非整倍体状态会对生物体产生可识别的影响:其中一个是三倍体致死且单倍体致死,一个是三倍体异常且单倍体异常,一个是超倍体敏感,十个是单倍体异常,41个是微小位点,还有三个要么是单倍体致死要么是微小位点。由于非整倍体致死位点较少,可以得出结论,非整倍体的有害影响主要是对异常剂量略有敏感的基因的累加效应的结果。此外,除了单个三倍体致死位点外,超倍体的影响比相应的亚倍体要小得多。