Suppr超能文献

城市中高浓度一氧化碳环境下空气传播细菌的存活情况

Survival of airborne bacteria in a high urban concentration of carbon monoxide.

作者信息

Lighthart B

出版信息

Appl Microbiol. 1973 Jan;25(1):86-91. doi: 10.1128/am.25.1.86-91.1973.

Abstract

Vegetative cells of Serratia marcescens 8UK, Sarcina lutea, and spores of Bacillus subtilus var. niger were held in aerosols, with and without an urban concentration of CO (85 muliters per liter or ppm), for up to 6 hr at 15 C and a relative humidity (RH) of approximately 0, 25, 50, 75, and 95%. It was found that CO enhanced the death rate of S. marcescens 8UK at least four- to sevenfold at low RH (ca. 1 to 25%), but protected the cells at high RH (ca. 90%). Death rates of S. lutea, with or without added CO, were comparatively low over the entire RH range. However, in the first hour, airborne S. lutea held in CO-containing air were more stable than those in air without added CO (i.e., CO protection). A marked increase in the death rate (up to 70-fold) occurred in the subsequent 5 hr within the RH range of approximately 0 to 75%. Statistical analysis indicated that aerosol decay rates of B. subtilus var. niger spores decreased significantly, when held in a CO-containing as compared to a non-CO-containing atmosphere, in the 0 to 85% RH range. Thus, the data presented indicate that CO in the urban environment may have a protective or lethal effect on airborne bacteria, dependent upon at least the microbial species, aerosol age, and relative humidity. A mechanism for CO death enhancement and protection of airborne S. marcescens 8UK is suggested to involve CO uncoupling of an energy-requiring death mechanism and an energy-requiring maintenance mechanism at high and low RH, respectively.

摘要

将粘质沙雷氏菌8UK、藤黄八叠球菌的营养细胞以及枯草芽孢杆菌黑色变种的孢子置于气溶胶中,分别在有和没有城市浓度一氧化碳(85微升/升或ppm)的情况下,于15℃、相对湿度(RH)约为0%、25%、50%、75%和95%的条件下放置长达6小时。结果发现,在低相对湿度(约1%至25%)时,一氧化碳使粘质沙雷氏菌8UK的死亡率至少提高了4至7倍,但在高相对湿度(约90%)时对细胞起到了保护作用。无论是否添加一氧化碳,藤黄八叠球菌在整个相对湿度范围内的死亡率都相对较低。然而,在最初的一小时内,置于含一氧化碳空气中的空气中藤黄八叠球菌比未添加一氧化碳的空气中的更稳定(即一氧化碳起到了保护作用)。在随后的5小时内,在相对湿度约为0%至75%的范围内,死亡率显著增加(高达70倍)。统计分析表明,在0%至85%的相对湿度范围内,与不含一氧化碳的大气相比,置于含一氧化碳大气中的枯草芽孢杆菌黑色变种孢子的气溶胶衰减率显著降低。因此,所呈现的数据表明,城市环境中的一氧化碳可能对空气中的细菌具有保护或致死作用,这至少取决于微生物种类、气溶胶存在时间和相对湿度。有人提出,一氧化碳增强空气中粘质沙雷氏菌8UK死亡率和保护作用的机制分别涉及在高相对湿度和低相对湿度下使需要能量的死亡机制和需要能量的维持机制解偶联。

相似文献

1
Survival of airborne bacteria in a high urban concentration of carbon monoxide.
Appl Microbiol. 1973 Jan;25(1):86-91. doi: 10.1128/am.25.1.86-91.1973.
2
Relationship between atmospheric temperature and survival of airborne bacteria.
Appl Microbiol. 1970 Feb;19(2):245-9. doi: 10.1128/am.19.2.245-249.1970.
3
Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space.
Appl Environ Microbiol. 2016 May 2;82(10):3061-3069. doi: 10.1128/AEM.03940-15. Print 2016 May 15.
4
Effect of NO 2 on airborne Venezuelan equine encephalomyelitis virus.
Appl Microbiol. 1972 Mar;23(3):481-4. doi: 10.1128/am.23.3.481-484.1972.
6
Effect of relative humidity on the inactivation of airborne Serratia marcescens by ultraviolet radiation.
Appl Microbiol. 1972 Jun;23(6):1113-20. doi: 10.1128/am.23.6.1113-1120.1972.
7
[Aerosol disinfection of bacterial spores].
Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med. 1987 Jun;184(3-4):229-52.
8
Stability of St. Louis encephalitis virus in the airborne state.
Appl Microbiol. 1969 Nov;18(5):880-2. doi: 10.1128/am.18.5.880-882.1969.
9
Thermal inactivation of aerosolized Bacillus subtilis var. niger spores.
Appl Microbiol. 1971 Oct;22(4):557-9. doi: 10.1128/am.22.4.557-559.1971.
10
Survival of airborne Pasteurella tularensis at different atmospheric temperatures.
Appl Microbiol. 1973 Mar;25(3):369-72. doi: 10.1128/am.25.3.369-372.1973.

引用本文的文献

1
Diurnal Variations of Size-Resolved Bioaerosols During Autumn and Winter Over a Semi-Arid Megacity in Northwest China.
Geohealth. 2021 May 1;5(5):e2021GH000411. doi: 10.1029/2021GH000411. eCollection 2021 May.
2
Airborne Microorganisms From Livestock Production Systems and Their Relation to Dust.
Crit Rev Environ Sci Technol. 2014 Apr 16;44(10):1071-1128. doi: 10.1080/10643389.2012.746064. eCollection 2014.
3
Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria?
Biochem Soc Trans. 2018 Oct 19;46(5):1107-1118. doi: 10.1042/BST20170311. Epub 2018 Sep 6.
4
Aerobiology: Experimental Considerations, Observations, and Future Tools.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.00809-17. Print 2017 Sep 1.
5
Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance.
Antioxid Redox Signal. 2016 Jun 10;24(17):1013-28. doi: 10.1089/ars.2015.6501. Epub 2016 Mar 30.
6
CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era.
J Biol Chem. 2015 Jul 31;290(31):18999-9007. doi: 10.1074/jbc.R115.642926. Epub 2015 Jun 8.
7
Effect of carbon monoxide on Mycobacterium tuberculosis pathogenesis.
Med Gas Res. 2012 Dec 17;2(1):30. doi: 10.1186/2045-9912-2-30.
8
Meteorological factors and ambient bacterial levels in a subtropical urban environment.
Int J Biometeorol. 2012 Nov;56(6):1001-9. doi: 10.1007/s00484-011-0514-6. Epub 2012 Jan 5.
9
BOARD-INVITED REVIEW: fate and transport of bioaerosols associated with livestock operations and manures.
J Anim Sci. 2010 Nov;88(11):3693-706. doi: 10.2527/jas.2010-3094. Epub 2010 Jul 9.
10
The effect of environmental parameters on the survival of airborne infectious agents.
J R Soc Interface. 2009 Dec 6;6 Suppl 6(Suppl 6):S737-46. doi: 10.1098/rsif.2009.0227.focus. Epub 2009 Sep 22.

本文引用的文献

1
Soil: a natural sink for carbon monoxide.
Science. 1971 Jun 18;172(3989):1229-31. doi: 10.1126/science.172.3989.1229.
2
Evaluation of Biological Effects of Air Pollutants by Use of Luminescent Bacteria.
J Bacteriol. 1965 Sep;90(3):832-3. doi: 10.1128/jb.90.3.832-833.1965.
3
EXPOSURE OF MICROORGANISMS TO LOW CONCENTRATIONS OF VARIOUS POLLUTANTS.
Am Ind Hyg Assoc J. 1964 Nov-Dec;25:595-600. doi: 10.1080/00028896409342649.
4
The use of a rotating drum for the study of aerosols over extended periods of time.
Am J Hyg. 1958 Jul;68(1):85-93. doi: 10.1093/oxfordjournals.aje.a119954.
5
Physiological responses of airborne bacteria to shifts in relative humidity.
Bacteriol Rev. 1966 Sep;30(3):597-603. doi: 10.1128/br.30.3.597-603.1966.
6
Carbon monoxide in the atmosphere.
J Air Pollut Control Assoc. 1968 Feb;18(2):106-10. doi: 10.1080/00022470.1968.10469094.
7
Reaction of airborne Rhizobium meliloti to some environmental factors.
Appl Microbiol. 1969 Oct;18(4):555-7. doi: 10.1128/am.18.4.555-557.1969.
8
Death mechanisms in airborne Escherichia coli.
J Gen Microbiol. 1967 Jun;47(3):325-33. doi: 10.1099/00221287-47-3-325.
10
Physical and chemical stresses of aerosolization.
Bacteriol Rev. 1966 Sep;30(3):551-8. doi: 10.1128/br.30.3.551-558.1966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验