Suppr超能文献

弱氧化醋杆菌中三羧酸循环的无功能状态及谷氨酸生物合成机制

Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans.

作者信息

Greenfield S, Claus G W

出版信息

J Bacteriol. 1972 Dec;112(3):1295-301. doi: 10.1128/jb.112.3.1295-1301.1972.

Abstract

Acetobacter suboxydans does not contain an active tricarboxylic acid cycle, yet two pathways have been suggested for glutamate synthesis from acetate catalyzed by cell extracts: a partial tricarboxylic acid cycle following an initial condensation of oxalacetate and acetyl coenzyme A. and the citramalate-mesaconate pathway following an initial condensation of pyruvate and acetyl coenzyme A. To determine which pathway functions in growing cells, acetate-1-(14)C was added to a culture growing in minimal medium. After growth had ceased, cells were recovered and fractionated. Radioactive glutamate was isolated from the cellular protein fraction, and the position of the radioactive label was determined. Decarboxylation of the C5 carbon removed 100% of the radioactivity found in the purified glutamate fraction. These experiments establish that growing cells synthesize glutamate via a partial tricarboxylic acid cycle. Aspartate isolated from these hydrolysates was not radioactive, thus providing further evidence for the lack of a complete tricarboxylic acid cycle. When cell extracts were analyzed, activity of all tricarboxylic acid cycle enzymes, except succinate dehydrogenase, was demonstrated.

摘要

弱氧化醋杆菌不含有活跃的三羧酸循环,但对于细胞提取物催化乙酸合成谷氨酸,已提出两条途径:草酰乙酸和乙酰辅酶A最初缩合后接着的部分三羧酸循环,以及丙酮酸和乙酰辅酶A最初缩合后接着的柠苹酸 - 中康酸途径。为了确定在生长细胞中起作用的是哪条途径,将乙酸 -1-(14)C添加到在基本培养基中生长的培养物中。生长停止后,回收细胞并进行分级分离。从细胞蛋白质级分中分离出放射性谷氨酸,并确定放射性标记的位置。C5碳的脱羧去除了纯化谷氨酸级分中发现的100%的放射性。这些实验证明生长细胞通过部分三羧酸循环合成谷氨酸。从这些水解产物中分离出的天冬氨酸没有放射性,从而进一步证明缺乏完整的三羧酸循环。当分析细胞提取物时,除琥珀酸脱氢酶外,所有三羧酸循环酶的活性均得到证实。

相似文献

1
Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans.
J Bacteriol. 1972 Dec;112(3):1295-301. doi: 10.1128/jb.112.3.1295-1301.1972.
2
Isocitrate dehydrogenase and glutamate synthesis in Acetobacter suboxydans.
J Bacteriol. 1969 Dec;100(3):1264-70. doi: 10.1128/jb.100.3.1264-1270.1969.
3
Glutamate biosynthesis in Acetobacter suboxydans. VI. Formation from acetate plus pyruvate.
Biochemistry. 1966 Aug;5(8):2646-53. doi: 10.1021/bi00872a024.
4
Phosphoenolpyruvate carboxylation and aspartate synthesis in Acetobacter suboxydans.
J Bacteriol. 1969 Feb;97(2):691-6. doi: 10.1128/jb.97.2.691-696.1969.
5
Tricarboxylic acid cycle in M. lepraemurium.
Int J Lepr Other Mycobact Dis. 1971 Oct-Dec;39(4):796-812.
6
The assimilation of carbon by Chloropseudomonas ethylicum.
Biochem J. 1968 Feb;106(3):615-22. doi: 10.1042/bj1060615.
7
Biosynthesis of alpha-isopropylmalic and citric acids in Acetobacter suboxydans.
J Bacteriol. 1967 Sep;94(3):512-6. doi: 10.1128/jb.94.3.512-516.1967.
8
Glutamate biosynthesis by Clostridium kluyveri: an unusual distribution of radioactivity in glutamic acid.
Biochim Biophys Acta. 1967 Aug 29;141(3):454-65. doi: 10.1016/0304-4165(67)90173-0.
9
Utilization of acetate by Beggiatoa.
J Bacteriol. 1966 Mar;91(3):1192-200. doi: 10.1128/jb.91.3.1192-1200.1966.

引用本文的文献

1
Identification of NAD-Dependent Xylitol Dehydrogenase from WSH-003.
ACS Omega. 2019 Sep 3;4(12):15074-15080. doi: 10.1021/acsomega.9b01867. eCollection 2019 Sep 17.
2
Designing Metabolic Division of Labor in Microbial Communities.
mSystems. 2019 Apr 9;4(2). doi: 10.1128/mSystems.00263-18. eCollection 2019 Mar-Apr.
3
Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers.
J Ind Microbiol Biotechnol. 2015 Apr;42(4):585-600. doi: 10.1007/s10295-015-1588-7. Epub 2015 Feb 3.
4
Acetic Acid bacteria: physiology and carbon sources oxidation.
Indian J Microbiol. 2013 Dec;53(4):377-84. doi: 10.1007/s12088-013-0414-z. Epub 2013 May 5.
6
Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H.
J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):379-88. doi: 10.1007/s10295-013-1231-4. Epub 2013 Feb 5.
9
Intracytoplasmic membrane formation and increased oxidation of glycerol growth of Gluconobacter oxydans.
J Bacteriol. 1975 Sep;123(3):1169-83. doi: 10.1128/jb.123.3.1169-1183.1975.
10
Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes?
Bacteriol Rev. 1977 Jun;41(2):419-48. doi: 10.1128/br.41.2.419-448.1977.

本文引用的文献

1
Growth Factors for Bacteria: XIV. Growth Requirements of Acetobacter suboxydans.
J Bacteriol. 1943 Feb;45(2):183-90. doi: 10.1128/jb.45.2.183-190.1943.
2
Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids.
Biochim Biophys Acta. 1950 Jan;4(1-3):211-4. doi: 10.1016/0006-3002(50)90026-6.
5
ENZYMES OF THE TRICARBOXYLIC ACID CYCLE IN ACETIC ACID BACTERIA.
J Gen Microbiol. 1964 May;35:237-47. doi: 10.1099/00221287-35-2-237.
6
OXIDATION OF ALIPHATIC GLYCOLS BY ACETIC ACID BACTERIA.
Bacteriol Rev. 1964 Jun;28(2):164-80.
7
THE ABSOLUTE STEREOCHEMICAL COURSE OF CITRIC ACID BIOSYNTHESIS.
Proc Natl Acad Sci U S A. 1963 Nov;50(5):981-8. doi: 10.1073/pnas.50.5.981.
9
Oxidative possibilities in the catalase-positive Acetobacter species.
Antonie Van Leeuwenhoek. 1959;25:241-64. doi: 10.1007/BF02542850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验