Suppr超能文献

一种需要琥珀酰辅酶A:乙酸辅酶A转移酶(AarC)的特殊柠檬酸循环赋予嗜酸菌醋酸杆菌对乙酸的抗性。

A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

作者信息

Mullins Elwood A, Francois Julie A, Kappock T Joseph

机构信息

Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

J Bacteriol. 2008 Jul;190(14):4933-40. doi: 10.1128/JB.00405-08. Epub 2008 May 23.

Abstract

Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

摘要

微生物通过调整大分子和新陈代谢来克服特定的环境挑战。醋酸菌将乙醇有氧氧化为醋酸,并且通常对这两种可透过细胞膜的毒物具有较高的耐受性。柠檬酸循环(CAC)与醋化醋杆菌的耐醋酸能力有关,这基于多项观察结果,其中包括高耐醋酸菌将醋酸氧化为二氧化碳,以及醋化醋杆菌柠檬酸合酶(AarA)在低pH值下耐醋酸能力中此前未得到解释的作用。在此,我们为醋化醋杆菌1023菌株aarABC区域的其他组分赋予了特定的生化功能。AarC是琥珀酰辅酶A(CoA):醋酸CoA转移酶,它在一种变体柠檬酸循环中取代了琥珀酰CoA合成酶。这种新的旁路似乎减少了对游离CoA的代谢需求、对核苷酸库的依赖,以及细胞质pH值变化对柠檬酸循环通量的可能影响。推测的aarB基因被重新归类为SixA,一种已知的柠檬酸循环通量激活剂。在许多细菌中,代谢受限期间会触发碳溢流途径,这通常会导致醋酸的产生和扩散损失。由于醋酸溢流对醋化醋杆菌不可行,因此可能会采用一种不经过底物水平(去)磷酸化就能去除醋酸的二氧化碳损失策略。因此,所有三个aar基因都支持通过一个完整但非传统的柠檬酸循环的通量,这是降低细胞质醋酸水平所必需的。

相似文献

10

引用本文的文献

本文引用的文献

1
Enzymes Responsible for Acetate Oxidation by Acetic Acid Bacteria.负责醋酸菌氧化乙酸的酶。
Biosci Biotechnol Biochem. 1999;63(12):2102-9. doi: 10.1271/bbb.63.2102.
8
Alanine racemase from the acidophile Acetobacter aceti.来自嗜酸醋杆菌的丙氨酸消旋酶。
Protein Expr Purif. 2007 Jan;51(1):39-48. doi: 10.1016/j.pep.2006.05.016. Epub 2006 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验