Suppr超能文献

大鼠骨骼肌肌浆和肌浆网中的钠和水含量:非等渗介质、哇巴因和细胞外钠的影响

Sodium and water contents of sarcoplasm and sarcoplasmic reticulum in rat skeletal muscle: effects of anisotonic media, ouabain and external sodium.

作者信息

Rogus E, Zierler K L

出版信息

J Physiol. 1973 Sep;233(2):227-70. doi: 10.1113/jphysiol.1973.sp010307.

Abstract
  1. During the first 2 hr washout of (24)Na from rat extensor digitorum longus muscle fits a sum of two exponentials, neither of which represents loss of extracellular tracer. This implies a model with two intracellular components.2. Results of suitably designed experiments indicate that the two components are bidirectionally connected to each other as well as to extracellular space. These results are incompatible with a model in which every fibre is homogeneous with respect to Na concentration and flux, but in which there is a distribution of these properties among fibres.3. Results are consistent with identification of the more slowly exchanging component as sarcoplasm and the more rapidly exchanging component as sarcoplasmic reticulum (SR).4. Parameters of the general model include six transport coefficients, two volumes, and contents of two Na pools. The number of equations is inadequate to yield unique solutions by which the values of these parameters can be calculated. However, we derive inequalities that place upper and lower limits on the parameters.5. If the model is correct, the rate constant for Na efflux from SR to extracellular space is at least five times greater than that across sarcolemma. Under standard conditions flux (per muscle weight) from SR is at least 100 times greater than that from sarcoplasm.6. Under standard conditions, only 2-4% of intracellular Na, or 0.5-0.9 m-equiv/kg wet wt., is in sarcoplasm, and the rest is in SR.7. Bounds on fluid volumes of sarcoplasm and SR under standard conditions are calculated with the assumption that Na concentration in SR is the same as in extracellular space. According to the calculations, fluid volume of sarcoplasm is 0.54 ml./g wet wt. Fluid volume of SR is about 0.124 ml./g wet wt., or 14.3% of fibre volume, in agreement with Peachey's estimate (1965) of volume of SR in frog muscle.8. Three tests are applied to the model, with the following results: (a) volume of sarcoplasm increases in hypotonic solution and decreases in hypertonic solutions, as predicted for an osmometer. Volume of SR tends to change in the opposite direction, in agreement with results of Birks & Davey (1969) from electron microscopy on frog muscle; (b) the major effect of partial substitution of external Na by Li is a reduction in Na content of SR, with no significant change in that of sarcoplasm or in volume of either component; (c) the major effect of 10(-5)M ouabain is an increase in Na content of sarcoplasm, with no demonstrable change in that of SR or in volume of either component.9. These results support the model, particularly our identification of the slowly exchanging component as sarcoplasm, identification of the rapidly exchanging component as SR, and the assumption that Na concentration in SR is close to that in extracellular fluid.
摘要
  1. 从大鼠趾长伸肌中洗脱(24)Na的最初2小时过程符合两个指数之和,其中任何一个都不代表细胞外示踪剂的损失。这意味着存在一个具有两个细胞内成分的模型。

  2. 经过精心设计的实验结果表明,这两个成分彼此之间以及与细胞外空间都是双向连接的。这些结果与这样一种模型不相符,即每个纤维在钠浓度和通量方面是均匀的,但这些特性在纤维之间存在分布。

  3. 结果与将交换较慢的成分鉴定为肌浆以及将交换较快的成分鉴定为肌浆网(SR)一致。

  4. 通用模型的参数包括六个转运系数、两个体积以及两个钠池的含量。方程数量不足以得出可计算这些参数值的唯一解。然而,我们推导出了对这些参数进行上限和下限限制的不等式。

  5. 如果该模型正确,从SR到细胞外空间的钠外流速率常数至少比跨肌膜的速率常数大五倍。在标准条件下,(每肌肉重量的)从SR的通量至少比从肌浆的通量高100倍。

  6. 在标准条件下,细胞内钠的2 - 4%,即0.5 - 0.9毫当量/千克湿重,存在于肌浆中,其余存在于SR中。

  7. 在假设SR中的钠浓度与细胞外空间相同的情况下,计算了标准条件下肌浆和SR的流体体积界限。根据计算,肌浆的流体体积为0.54毫升/克湿重。SR的流体体积约为0.124毫升/克湿重,即纤维体积的14.3%,与皮奇(1965年)对青蛙肌肉中SR体积的估计一致。

  8. 对该模型进行了三项测试,结果如下:(a) 肌浆体积在低渗溶液中增加,在高渗溶液中减少,这与渗透压计的预测一致。SR体积倾向于朝相反方向变化,这与伯克斯和戴维(1969年)对青蛙肌肉的电子显微镜观察结果一致;(b) 用锂部分替代细胞外钠的主要影响是SR中钠含量的降低,肌浆中的钠含量和任何一个成分的体积均无显著变化;(c) 10(-5)M哇巴因的主要影响是肌浆中钠含量的增加,SR中的钠含量和任何一个成分的体积均无明显变化。

  9. 这些结果支持了该模型,特别是我们将交换较慢的成分鉴定为肌浆、将交换较快的成分鉴定为SR,以及假设SR中的钠浓度接近细胞外液中的钠浓度。

相似文献

3
The components of the sodium efflux in frog muscle.蛙肌中钠外流的组成部分。
J Physiol. 1968 Oct;198(3):581-99. doi: 10.1113/jphysiol.1968.sp008627.

引用本文的文献

3
Interstitial space of mouse skeletal muscle.小鼠骨骼肌的间质间隙
J Physiol. 1982 Jul;328:507-19. doi: 10.1113/jphysiol.1982.sp014280.

本文引用的文献

1
Transport of ions across cellular membranes.离子跨细胞膜的转运。
Physiol Rev. 1949 Apr;29(2):127-55. doi: 10.1152/physrev.1949.29.2.127.
5
Distribution and movement of muscle chloride.肌肉中氯离子的分布与移动
J Physiol. 1963 Apr;166(1):87-109. doi: 10.1113/jphysiol.1963.sp007092.
6
Movements of Na and K in single muscle fibres.单根肌纤维中钠和钾的运动。
J Physiol. 1959 Mar 3;145(2):405-32. doi: 10.1113/jphysiol.1959.sp006150.
10
The ionic fluxes in frog muscle.青蛙肌肉中的离子通量。
Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359-82. doi: 10.1098/rspb.1954.0030.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验