Suppr超能文献

Mass-transfer effects on the rate of isomerization of D-glucose into D-fructose, catalyzed by whole-cell immobilized glucose isomerase.

作者信息

Boersma J G, Vellenga K, de Wilt H G, Joosten G E

出版信息

Biotechnol Bioeng. 1979 Oct;21(10):1711-24. doi: 10.1002/bit.260211003.

Abstract

The investigated catalyst system consists of immobilized Arthrobacter cells containing the enzyme glucose isomerase, which catalyzes the isomerization of glucose into fructose. The internal structure of the catalyst was determined from electrom microscope photographs of replicas of freeze-etched catalyst. On the basis of the photographs a model for the internal structure of the catalyst was proposed. This structure was subsequently used to describe the reaction including mass-transfer effects. It appeared that under normal operating conditions the external mass-transfer rate does not influence the overall rate of reaction. The effect of internal mass-transfer resistances on the overall reaction rate can well be accounted for by the so-called porous sphere model. The intrinsic kinetics of the isomerization catalyzed by the present catalyst system can be represented by a modified Michaelis-Menten equation for a reversible one-substrate reaction.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验