Suppr超能文献

大肠杆菌中的铁运输:大肠杆菌突变体中铬敏感性与高铁需求之间的关系。

Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli.

作者信息

Wang C C, Newton A

出版信息

J Bacteriol. 1969 Jun;98(3):1135-41. doi: 10.1128/jb.98.3.1135-1141.1969.

Abstract

Utilization of iron (Fe(3+)) by Escherichia coli depends upon a system which is determined by at least two genetic loci. Mutants which carry a deletion of the tonB-trp region of the chromosome grow only when very high concentrations of iron are present in the medium. These strains are sensitive to chromic ion (Cr(3+)) and, unlike the parent strain, fail to grow on MnSO(4) when FeSO(4) is not added to the medium. A second type of mutant, Chr2, which was isolated on the basis of its sensitivity to chromic ion, also requires a high concentration of iron for growth. This mutant can be distinguished phenotypically from the deletion mutants since it grows normally on low concentrations of iron, provided citrate is added to the medium. The chromium sensitivity of both types of mutants can be reversed by high concentrations of exogenous iron. The data are interpreted to indicate that the E. coli mutants studied are defective in iron transport and that residual iron transport is in some way inhibited by chromic ion.

摘要

大肠杆菌对铁(Fe(3+))的利用依赖于一个由至少两个基因位点决定的系统。携带染色体tonB - trp区域缺失的突变体只有在培养基中存在非常高浓度的铁时才能生长。这些菌株对铬离子(Cr(3+))敏感,并且与亲本菌株不同,当培养基中不添加FeSO(4)时,它们在MnSO(4)上无法生长。第二种类型的突变体Chr2,是根据其对铬离子的敏感性分离出来的,它生长也需要高浓度的铁。这种突变体在表型上可以与缺失突变体区分开来,因为如果向培养基中添加柠檬酸盐,它在低浓度的铁上能正常生长。两种类型突变体的铬敏感性都可以被高浓度的外源铁逆转。这些数据被解释为表明所研究的大肠杆菌突变体在铁转运方面存在缺陷,并且残余的铁转运在某种程度上受到铬离子的抑制。

相似文献

2
Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine.
J Bacteriol. 1969 Jun;98(3):1142-50. doi: 10.1128/jb.98.3.1142-1150.1969.
3
Iron uptake in colicin B-resistant mutants of Escherichia coli K-12.
J Bacteriol. 1976 Jun;126(3):1052-62. doi: 10.1128/jb.126.3.1052-1062.1976.
4
Exogenous induction of the iron dicitrate transport system of Escherichia coli K-12.
J Bacteriol. 1984 Jul;159(1):271-7. doi: 10.1128/jb.159.1.271-277.1984.
7
Mutations affecting iron transport in Escherichia coli.
J Bacteriol. 1970 Oct;104(1):219-26. doi: 10.1128/jb.104.1.219-226.1970.
8
Iron-requiring mutant of Escherichia coli carrying a deletion in the aroG-nadA region of the chromosome.
J Bacteriol. 1976 Oct;128(1):490-1. doi: 10.1128/jb.128.1.490-491.1976.
9
Overcoming Iron Deficiency of an Escherichia coli Mutant by Increasing Outer Membrane Permeability.
J Bacteriol. 2019 Aug 8;201(17). doi: 10.1128/JB.00340-19. Print 2019 Sep 1.
10
Manganese-resistant mutants of Escherichia coli: physiological and genetic studies.
J Bacteriol. 1972 Apr;110(1):186-95. doi: 10.1128/jb.110.1.186-195.1972.

引用本文的文献

1
Transcriptome Analysis Reveals Cr(VI) Adaptation Mechanisms in sp. Strain AqSCr.
Front Microbiol. 2021 May 27;12:656589. doi: 10.3389/fmicb.2021.656589. eCollection 2021.
2
Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
Chem Rev. 2021 May 12;121(9):5193-5239. doi: 10.1021/acs.chemrev.0c01005. Epub 2021 Mar 16.
3
SO2426 is a positive regulator of siderophore expression in Shewanella oneidensis MR-1.
BMC Microbiol. 2011 May 31;11:125. doi: 10.1186/1471-2180-11-125.
5
Isolation and Characterization of an Fe(III)-Chelating Compound Produced by Pseudomonas syringae.
Appl Environ Microbiol. 1986 Jul;52(1):157-60. doi: 10.1128/aem.52.1.157-160.1986.
6
Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria.
J Bacteriol. 1998 Dec;180(24):6689-96. doi: 10.1128/JB.180.24.6689-6696.1998.
8
9
Iron acquisition by Neisseria meningitidis in vitro.
Infect Immun. 1980 Feb;27(2):322-34. doi: 10.1128/iai.27.2.322-334.1980.
10
Iron requirements and aluminum sensitivity of an hydroxamic acid-requiring strain of Bacillus megaterium.
J Bacteriol. 1971 Feb;105(2):589-94. doi: 10.1128/jb.105.2.589-594.1971.

本文引用的文献

2
ON A MECHANISM OF SUPPRESSOR GENE REGULATION OF TRYPTOPHAN SYNTHETASE ACTIVITY IN NEUROSPORA CRASSA.
Proc Natl Acad Sci U S A. 1959 Feb;45(2):193-6. doi: 10.1073/pnas.45.2.193.
4
Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli.
J Bacteriol. 1958 Nov;76(5):518-23. doi: 10.1128/jb.76.5.518-523.1958.
6
Transducing fragments in generalized transduction by phage P1. I. Molecular origin of the fragments.
J Mol Biol. 1965 Nov;14(1):85-109. doi: 10.1016/s0022-2836(65)80232-7.
7
In vivo and in vitro formation of 2,3-dihydroxybenzoylserine by Escherichia coli K12.
Biochem Biophys Res Commun. 1966 Nov 22;25(4):454-61. doi: 10.1016/0006-291x(66)90227-0.
8
Mutation leading to increased sensitivity to chromium in Salmonella typhimurium.
J Bacteriol. 1966 Apr;91(4):1509-15. doi: 10.1128/jb.91.4.1509-1515.1966.
9
Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine.
J Bacteriol. 1969 Jun;98(3):1142-50. doi: 10.1128/jb.98.3.1142-1150.1969.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验