Suppr超能文献

钼酸盐对大肠杆菌chlD突变体硝酸还原酶活性的表型恢复作用

Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli.

作者信息

Glaser J H, DeMoss J A

出版信息

J Bacteriol. 1971 Nov;108(2):854-60. doi: 10.1128/jb.108.2.854-860.1971.

Abstract

ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10(-4)m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems.

摘要

大肠杆菌的ChlD突变体具有多效性,缺乏甲酸 - 硝酸盐还原酶活性以及甲酸 - 氢裂解酶活性。以甲酸作为电子供体并测量产生的亚硝酸盐量来测定全链甲酸 - 硝酸盐还原酶活性,通过向生长培养基中添加10^(-4) mol钼酸盐,突变体中的该活性恢复到野生型水平。在这些条件下,补充钼酸盐后,膜结合硝酸盐还原酶链各组分的活性均增加。在没有硝酸盐的情况下,甲酸 - 氢裂解酶系统的活性也通过钼酸盐得以恢复。缺失chlD基因的菌株对补充钼酸盐的反应方式类似。在培养基中钼酸盐浓度无论是低还是高时,chlD突变体细胞中的钼浓度与野生型细胞相比均无显著差异。然而,钼在可溶性蛋白和膜组分之间的分布与野生型有显著差异。我们得出结论,chlD基因产物不可能是甲酸 - 氢裂解酶途径或甲酸 - 硝酸盐还原酶途径的结构成分,但它必定在将钼酸盐加工成两种电子传递系统所需形式的过程中起间接作用。

相似文献

引用本文的文献

2
The molybdate-binding protein ModA is required for -induced UTI.钼酸盐结合蛋白ModA是诱导性尿路感染所必需的。
Front Microbiol. 2023 Apr 27;14:1156273. doi: 10.3389/fmicb.2023.1156273. eCollection 2023.
3
Methionine oxidation under anaerobic conditions in Escherichia coli.大肠杆菌在厌氧条件下的蛋氨酸氧化。
Mol Microbiol. 2022 Oct;118(4):387-402. doi: 10.1111/mmi.14971. Epub 2022 Aug 17.
4
The History of the Molybdenum Cofactor-A Personal View.钼辅因子的历史——个人视角。
Molecules. 2022 Aug 3;27(15):4934. doi: 10.3390/molecules27154934.
5
Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria.钼酶及其在病原菌中如何支持毒力
Front Microbiol. 2020 Dec 11;11:615860. doi: 10.3389/fmicb.2020.615860. eCollection 2020.
7
Biosynthesis and Insertion of the Molybdenum Cofactor.钼辅因子的生物合成与插入
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0006-2013.

本文引用的文献

2
BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN.分子氢的生物形成
Science. 1965 Apr 9;148(3667):186-92. doi: 10.1126/science.148.3667.186.
5
A new procedure for assay of bacterial hydrogenases.一种测定细菌氢化酶的新方法。
J Bacteriol. 1956 Jan;71(1):70-80. doi: 10.1128/jb.71.1.70-80.1956.
9
Alteration of respiratory particles by mutation in Escherichia coli K 12.大肠杆菌K12突变对呼吸颗粒的改变。
Biochem Biophys Res Commun. 1967 Apr 20;27(2):270-4. doi: 10.1016/s0006-291x(67)80073-1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验