Suppr超能文献

钼对大肠杆菌中延胡索酸还原酶抑制和硝酸还原酶诱导的作用

Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

作者信息

Iuchi S, Lin E C

出版信息

J Bacteriol. 1987 Aug;169(8):3720-5. doi: 10.1128/jb.169.8.3720-3725.1987.

Abstract

In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector.

摘要

在大肠杆菌中,硝酸盐的存在会阻止其利用富马酸作为厌氧电子受体。编码硝酸还原酶的narC操纵子的诱导与编码富马酸还原酶的frd操纵子的阻遏相偶联。这种偶联由作为效应物的硝酸盐和作为调节蛋白的narL产物介导(S. 内池和E. C. C. 林,《美国国家科学院院刊》84:3901 - 3905,1987年)。蛋白质 - 配体复合物似乎对narC起正向控制作用,但对frd起负向控制作用。在本研究中,我们发现一种钼辅助效应物在frd和narC的调节中与硝酸盐协同作用。在被认为钼酸盐转运(或加工)受损的chlD突变体中,除非在生长培养基中直接添加钼酸盐(1微摩尔),否则硝酸盐不会对phi(frd - lac)进行完全阻遏,也不会对phi(narC - lac)进行完全诱导。这种需求在野生型细胞中并不明显,显然是因为矿物培养基中作为污染物存在的微量钼酸盐满足了这一需求。在chlB突变体中,由于钼辅因子未能作为辅基插入硝酸还原酶等蛋白质中而导致其积累,添加钼酸盐也会增强硝酸盐对frd的阻遏和对narC的诱导。在这种情况下,钼辅助效应物的缺乏可能是由于未利用的钼辅因子水平升高对钼酸盐转运(或加工)的反馈抑制增强所致。此外,已知chlE中的突变会阻断钼辅因子有机部分的合成,降低了frd阻遏和narC诱导所需的硝酸盐阈值浓度(<1微摩尔)。这些变化可以简单地解释为,在缺乏破坏效应物能力的细胞中,细胞内可达到的硝酸盐水平更高。

相似文献

1
Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.
J Bacteriol. 1987 Aug;169(8):3720-5. doi: 10.1128/jb.169.8.3720-3725.1987.
2
Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli.
J Bacteriol. 1987 May;169(5):1853-60. doi: 10.1128/jb.169.5.1853-1860.1987.
4
Three classes of Escherichia coli mutants selected for aerobic expression of fumarate reductase.
J Bacteriol. 1986 Dec;168(3):1415-21. doi: 10.1128/jb.168.3.1415-1421.1986.
8
Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
J Bacteriol. 1981 Oct;148(1):274-82. doi: 10.1128/jb.148.1.274-282.1981.

引用本文的文献

3
Autogenous regulation of gene expression.
J Bacteriol. 1993 Jan;175(2):307-16. doi: 10.1128/jb.175.2.307-316.1993.
6
Expression and functional properties of fumarate reductase.
Biochem J. 1994 Dec 1;304 ( Pt 2)(Pt 2):321-31. doi: 10.1042/bj3040321.
8
Expression of the narX, narL, narP, and narQ genes of Escherichia coli K-12: regulation of the regulators.
J Bacteriol. 1995 Jul;177(13):3865-9. doi: 10.1128/jb.177.13.3865-3869.1995.
10
Nitrate respiration in relation to facultative metabolism in enterobacteria.
Microbiol Rev. 1988 Jun;52(2):190-232. doi: 10.1128/mr.52.2.190-232.1988.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12.
J Bacteriol. 1982 Sep;151(3):1320-5. doi: 10.1128/jb.151.3.1320-1325.1982.
4
Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci.
J Bacteriol. 1982 Aug;151(2):788-99. doi: 10.1128/jb.151.2.788-799.1982.
6
Overlap between ampC and frd operons on the Escherichia coli chromosome.
Proc Natl Acad Sci U S A. 1982 Feb;79(4):1111-5. doi: 10.1073/pnas.79.4.1111.
7
Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli.
Eur J Biochem. 1982 Mar 1;122(3):479-84. doi: 10.1111/j.1432-1033.1982.tb06462.x.
8
Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
J Bacteriol. 1981 Oct;148(1):274-82. doi: 10.1128/jb.148.1.274-282.1981.
10
Amplification and product identification of the fnr gene of Escherichia coli.
J Gen Microbiol. 1982 Oct;128(10):2221-8. doi: 10.1099/00221287-128-10-2221.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验