Suppr超能文献

芽孢形成突变体的分析。I.尿嘧啶掺入对碳源的反应及其他突变特性。

Analysis of sporulation mutants. I. Response of uracil incorporation to carbon sources, and other mutant properties.

作者信息

Freese E, Fortnagel P

出版信息

J Bacteriol. 1967 Dec;94(6):1957-69. doi: 10.1128/jb.94.6.1957-1969.1967.

Abstract

Mutants deficient in sporulation were isolated and characterized with respect to antibiotic and protease activity, transformability, growth, and sporulation. All but two mutants could grow on minimal medium containing glucose. The inability of most mutants to incorporate uracil into trichloroacetic acid-precipitable material (ribonucleic acid) during the developmental period, and their response to a number of carbon sources, were used to characterize their biochemical blocks. Reproducible measurements of these responses were possible when the pH of the culture, which changed during growth and greatly influenced the rate of uracil uptake, was adjusted to 6.5. By their response to ribose and glutamate, the sporulation mutants could then be divided into four groups. All mutants of the first three groups produced antibiotic activity against Staphylococcus aureus, whereas all mutants, except one, of the fourth group produced none or very little of this activity. Mutants which did not respond to glutamate belonged to the first three groups; they also grew slowly or not at all on glutamate as sole carbon source. One of these mutants lacked succinic dehydrogenase activity. The results indicate that most of our sporulation mutants are unable to produce or utilize a natural carbon precursor, which is normally used as a slowly available carbon and energy source via the Krebs cycle when other carbon sources are used up. It enters the Krebs cycle as a precursor of alpha-ketoglutarate, probably via acetylcoenzyme A. All mutants of group four are blocked in this pathway before alpha-ketoglutarate.

摘要

分离出了孢子形成缺陷型突变体,并对其抗生素和蛋白酶活性、转化能力、生长及孢子形成进行了表征。除两个突变体外,其他所有突变体都能在含有葡萄糖的基本培养基上生长。利用大多数突变体在发育期间无法将尿嘧啶掺入三氯乙酸可沉淀物质(核糖核酸)以及它们对多种碳源的反应,来表征其生化阻断情况。当将生长过程中会发生变化且极大影响尿嘧啶摄取速率的培养基pH值调至6.5时,就能够对这些反应进行可重复测量。根据孢子形成突变体对核糖和谷氨酸的反应,可将其分为四组。前三组的所有突变体都对金黄色葡萄球菌产生抗生素活性,而第四组除一个突变体外的所有突变体均不产生或仅产生极少的这种活性。对谷氨酸无反应的突变体属于前三组;它们在以谷氨酸作为唯一碳源时生长缓慢或根本不生长。其中一个突变体缺乏琥珀酸脱氢酶活性。结果表明,我们的大多数孢子形成突变体无法产生或利用一种天然碳前体,当其他碳源耗尽时,这种碳前体通常会通过三羧酸循环作为一种缓慢可用的碳和能源。它可能通过乙酰辅酶A作为α-酮戊二酸的前体进入三羧酸循环。第四组的所有突变体在α-酮戊二酸之前的这条途径中被阻断。

相似文献

2
Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle.
J Bacteriol. 1968 Apr;95(4):1431-8. doi: 10.1128/jb.95.4.1431-1438.1968.
3
Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex.
J Bacteriol. 1969 Sep;99(3):745-56. doi: 10.1128/jb.99.3.745-756.1969.
4
Isolation and properties of a temperature-sensitive sporulation mutant of Bacillus subtilis.
J Bacteriol. 1970 Mar;101(3):1027-37. doi: 10.1128/jb.101.3.1027-1037.1970.
5
Citric acid cycle: gene-enzyme relationships in Bacillus subtilis.
J Bacteriol. 1970 Nov;104(2):826-33. doi: 10.1128/jb.104.2.826-833.1970.
6
Developmental block in citric acid cycle mutants of Bacillus subtilis.
J Bacteriol. 1973 Dec;116(3):1466-8. doi: 10.1128/jb.116.3.1466-1468.1973.
7
Curing of a sporulation mutant and antibiotic activity of Bacillus subtilis.
J Bacteriol. 1968 Oct;96(4):1255-65. doi: 10.1128/jb.96.4.1255-1265.1968.
9
Repression of sporulation in Bacillus subtilis by L-malate.
J Bacteriol. 1976 Feb;125(2):453-60. doi: 10.1128/jb.125.2.453-460.1976.
10
Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes.
J Bacteriol. 1967 Jun;93(6):1777-87. doi: 10.1128/jb.93.6.1777-1787.1967.

引用本文的文献

1
Fatty Acid Synthesis Knockdown Promotes Biofilm Wrinkling and Inhibits Sporulation in Bacillus subtilis.
mBio. 2022 Oct 26;13(5):e0138822. doi: 10.1128/mbio.01388-22. Epub 2022 Sep 7.
3
High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis.
PLoS Biol. 2016 Jan 6;14(1):e1002341. doi: 10.1371/journal.pbio.1002341. eCollection 2016 Jan.
4
Requirement for Acetate and Glycine (or Serine) for Sporulation Without Growth of Bacillus subtilis.
J Bacteriol. 1970 Dec;104(3):1074-85. doi: 10.1128/jb.104.3.1074-1085.1970.
5
Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster.
Appl Environ Microbiol. 2004 Apr;70(4):2349-53. doi: 10.1128/AEM.70.4.2349-2353.2004.
6
Template specificity of transcription during sporulation of Bacillus subtilis.
Nucleic Acids Res. 1974 Mar;1(3):397-412. doi: 10.1093/nar/1.3.397.
7
Cell division of cycle of Bacillus subtilis: evidence of variability in period D.
J Bacteriol. 1980 Apr;142(1):254-61. doi: 10.1128/jb.142.1.254-261.1980.
8
Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase.
J Bacteriol. 1981 Feb;145(2):760-7. doi: 10.1128/jb.145.2.760-767.1981.
9
Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis.
J Bacteriol. 1971 Jun;106(3):848-55. doi: 10.1128/jb.106.3.848-855.1971.
10
Citric acid cycle: gene-enzyme relationships in Bacillus subtilis.
J Bacteriol. 1970 Nov;104(2):826-33. doi: 10.1128/jb.104.2.826-833.1970.

本文引用的文献

1
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
2
Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids.
Biochim Biophys Acta. 1950 Jan;4(1-3):211-4. doi: 10.1016/0006-3002(50)90026-6.
3
CHARACTERIZATION OF MESSENGER RNA IN SPORULATING BACILLUS CEREUS.
J Mol Biol. 1965 Mar;11:576-88. doi: 10.1016/s0022-2836(65)80012-2.
4
GENETIC TRANSCRIPTION DURING MORPHOGENESIS.
Proc Natl Acad Sci U S A. 1964 Sep;52(3):755-62. doi: 10.1073/pnas.52.3.755.
5
A genetic locus for the regulation of ribonucleic acid synthesis.
Proc Natl Acad Sci U S A. 1961 Dec 15;47(12):2005-14. doi: 10.1073/pnas.47.12.2005.
6
Catabolic repression of bacterial sporulation.
Proc Natl Acad Sci U S A. 1965 Sep;54(3):704-11. doi: 10.1073/pnas.54.3.704.
9
Genetic control of RNA turnover in sporulation mutants of Bacillus subtilis.
Biochem Biophys Res Commun. 1964 Mar 26;15(3):240-2. doi: 10.1016/0006-291x(64)90153-6.
10
Quantitative regulation of RNA synthesis during sporulation of Bacillus subtilis.
Biochem Biophys Res Commun. 1964 Mar 26;15(3):236-9. doi: 10.1016/0006-291x(64)90152-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验