Suppr超能文献

那不勒斯硫杆菌磷酸核酮糖激酶的性质

Properties of phosphoribulokinase from Thiobacillus neapolitanus.

作者信息

MacElroy R D, Mack H M, Johnson E J

出版信息

J Bacteriol. 1972 Oct;112(1):532-8. doi: 10.1128/jb.112.1.532-538.1972.

Abstract

Partially purified preparations of ribulose-5-phosphate kinase (specific activity, 50 to 125 mumoles per min per mg of protein) were employed in a series of kinetic experiments in the presence of several concentrations of H(+), Mg(2+), adenosine triphosphate (ATP), and phosphoenolpyruvate (PEP). The pH optimum of the enzyme was found to be 7.9; at this pH and above, response of the enzyme to variations in ATP concentration was hyperbolic, exhibiting a K(m) of 7 x 10(-4)m ATP. At pH values below the optimum the response to ATP was sigmoidal, as it was throughout the entire pH range in the presence of PEP at a concentration greater than 5 x 10(-4)m. In the presence of PEP the pH optimum shifted to pH 8.4. In contrast, phosphoribulokinase from spinach exhibited hyperbolic responses throughout its pH range with no inhibition caused by PEP. Thiobacillus neapolitanus phosphoribulokinase was inhibited by PEP in a sigmoidal manner; however, in the presence of suboptimal concentrations of Mg(2+) the addition of PEP caused significant stimulation of activity. It is postulated that the enzyme consists of interacting subunits with several sites on the enzyme for binding ATP and with several separate sites binding PEP. It is suggested that PEP functions as a regulator of CO(2) fixation when the organism is under conditions of unlimited concentrations of substrate and CO(2).

摘要

使用部分纯化的核糖-5-磷酸激酶制剂(比活性为每分钟每毫克蛋白质50至125微摩尔),在存在几种浓度的H⁺、Mg²⁺、三磷酸腺苷(ATP)和磷酸烯醇丙酮酸(PEP)的情况下进行了一系列动力学实验。发现该酶的最适pH值为7.9;在此pH值及以上,酶对ATP浓度变化的反应呈双曲线型,ATP的米氏常数(Kₘ)为7×10⁻⁴m。在最适pH值以下,对ATP的反应呈S型,在PEP浓度大于5×10⁻⁴m时,在整个pH范围内均如此。在有PEP存在时,最适pH值移至8.4。相比之下,菠菜中的磷酸核糖激酶在其整个pH范围内呈双曲线反应,不受PEP抑制。那不勒斯硫杆菌磷酸核糖激酶受PEP的抑制呈S型;然而,在Mg²⁺浓度次优时,添加PEP会显著刺激其活性。据推测,该酶由相互作用的亚基组成,酶上有几个结合ATP的位点和几个分别结合PEP的位点。有人提出,当生物体处于底物和CO₂浓度不受限制的条件下时,PEP作为CO₂固定的调节剂发挥作用。

相似文献

1
Properties of phosphoribulokinase from Thiobacillus neapolitanus.
J Bacteriol. 1972 Oct;112(1):532-8. doi: 10.1128/jb.112.1.532-538.1972.
3
Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans.
J Bacteriol. 1967 Oct;94(4):1052-9. doi: 10.1128/jb.94.4.1052-1059.1967.
5
Purification and regulatory properties of pyruvate kinase from Veillonella parvula.
J Bacteriol. 1975 Jun;122(3):1274-82. doi: 10.1128/jb.122.3.1274-1282.1975.
6
Competitive inhibition of phosphoribulokinase by AMP.
Biochem Biophys Res Commun. 1966 Sep 8;24(5):792-6. doi: 10.1016/0006-291x(66)90396-2.
8
Phosphoenolpyruvate, a new inhibitor of phosphoribulokinase in pseudomonas facilis.
Biochem Biophys Res Commun. 1971 Aug 6;44(3):614-8. doi: 10.1016/s0006-291x(71)80127-4.
9
Adenylate kinase from Thiobacillus neapolitanus. Unique properties, possibly designed to serve a unique metabolic function.
Biochim Biophys Acta. 1973 Oct 10;321(2):512-25. doi: 10.1016/0005-2744(73)90194-0.
10
COUPLING OF PHOSPHORYLATION AND CARBON DIOXIDE FIXATION IN EXTRACTS OF THIOBACILLUS THIOPARUS.
J Bacteriol. 1965 Apr;89(4):1041-50. doi: 10.1128/jb.89.4.1041-1050.1965.

引用本文的文献

1
Optimizing anaerobic growth rate and fermentation kinetics in strains expressing Calvin-cycle enzymes for improved ethanol yield.
Biotechnol Biofuels. 2018 Jan 25;11:17. doi: 10.1186/s13068-017-1001-z. eCollection 2018.
2
A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea.
Nat Commun. 2017 Jan 13;8:14007. doi: 10.1038/ncomms14007.
3
Purification and characterization of phosphoribulokinase from wheat leaves.
Planta. 1985 Sep;165(4):507-12. doi: 10.1007/BF00398096.
4
Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.
Biotechnol Biofuels. 2013 Aug 29;6(1):125. doi: 10.1186/1754-6834-6-125.
5
Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria.
J Bacteriol. 1980 Sep;143(3):1275-80. doi: 10.1128/jb.143.3.1275-1280.1980.
6
Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria.
Antonie Van Leeuwenhoek. 1984;50(5-6):473-87. doi: 10.1007/BF02386221.
8
9
Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase.
Bacteriol Rev. 1973 Sep;37(3):289-319. doi: 10.1128/br.37.3.289-319.1973.
10
Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms.
Microbiol Rev. 1988 Jun;52(2):155-89. doi: 10.1128/mr.52.2.155-189.1988.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL.
J Mol Biol. 1965 May;12:88-118. doi: 10.1016/s0022-2836(65)80285-6.
4
The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase.
Arch Biochem Biophys. 1957 Jul;69:300-10. doi: 10.1016/0003-9861(57)90496-4.
6
Competitive inhibition of phosphoribulokinase by AMP.
Biochem Biophys Res Commun. 1966 Sep 8;24(5):792-6. doi: 10.1016/0006-291x(66)90396-2.
10
Allosteric regulation of phosphoribulokinase activity.
Biochem Biophys Res Commun. 1968 Mar 27;30(6):678-82. doi: 10.1016/0006-291x(68)90566-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验