Suppr超能文献

某些细菌和真菌的热值

Calorific content of certain bacteria and fungi.

作者信息

Prochazka G J, Payne W J, Mayberry W R

出版信息

J Bacteriol. 1970 Nov;104(2):646-9. doi: 10.1128/jb.104.2.646-649.1970.

Abstract

Calorific contents of dried cells of several representative species of bacteria (gram-negative rods and gram-positive rods and cocci), two species of yeasts, and a filamentous fungus were determined by bomb calorimetry. The grand mean was 5,383 cal per g of ash-free dry weight. This value was then used to determine quantity of energy assimilated (E(a)) during growth. Subsequently, E(a) was employed in the equation: Y(kcal) = Y/(E(a) + E(d)), where Y(kcal) is the yield of cells per kilocalorie of energy taken from a culture medium, Y is the yield per mole of substrate utilized, E(a) is Y times caloric content of the cells, and E(d) is the energy expended by oxidative dissimilation. An estimate of E(d) was obtained for a number of experiments by multiplying the moles of oxygen consumed per mole of substrate utilized during growth by the average quantity of energy utilized to reduce a mole of oxygen with electrons from organic compounds (106 kcal). From previous studies in our laboratories, a value for Y(kcal) of 0.118 g/kcal was predicted. The mean value for data from five studies of aerobic growth of prototrophic heterotrophs was found to be 0.111.

摘要

通过弹式量热法测定了几种代表性细菌(革兰氏阴性杆菌、革兰氏阳性杆菌和球菌)、两种酵母和一种丝状真菌的干燥细胞的热值。总平均值为每克无灰干重5383卡。然后用该值确定生长过程中同化的能量(E(a))的量。随后,E(a)被用于以下方程:Y(kcal)=Y/(E(a)+E(d)),其中Y(kcal)是每千卡从培养基中获取的能量所产生的细胞产量,Y是每摩尔利用的底物的产量,E(a)是Y乘以细胞的热值,E(d)是通过氧化异化消耗的能量。通过将生长过程中每摩尔利用的底物消耗的氧气摩尔数乘以用来自有机化合物的电子还原一摩尔氧气所利用的平均能量(106千卡),对许多实验获得了E(d)的估计值。根据我们实验室以前的研究,预测Y(kcal)的值为0.118克/千卡。发现来自五项原养型异养生物有氧生长研究的数据的平均值为0.111。

相似文献

1
Calorific content of certain bacteria and fungi.某些细菌和真菌的热值
J Bacteriol. 1970 Nov;104(2):646-9. doi: 10.1128/jb.104.2.646-649.1970.
2
Energy yields and growth of heterotrophs.异养生物的能量产出与生长
Annu Rev Microbiol. 1970;24:17-52. doi: 10.1146/annurev.mi.24.100170.000313.
8
Letter: Calorific contents of microorganisms.信函:微生物的热量含量
Biotechnol Bioeng. 1973 Sep;15(5):1007-10. doi: 10.1002/bit.260150517.
10
Growth control in microbial cultures.微生物培养中的生长控制
Annu Rev Microbiol. 1985;39:299-319. doi: 10.1146/annurev.mi.39.100185.001503.

引用本文的文献

1
Tolerance to a Diet of Toxic in .对……中毒性饮食的耐受性
Toxins (Basel). 2025 Feb 27;17(3):109. doi: 10.3390/toxins17030109.
2
The bioenergetic cost of building a metazoan.后生动物构建的生物能量成本。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2414742121. doi: 10.1073/pnas.2414742121. Epub 2024 Nov 7.
3
Diversity and metabolic energy in bacteria.细菌的多样性和代谢能量。
FEMS Microbiol Lett. 2023 Jan 17;370. doi: 10.1093/femsle/fnad043.
8
A common origin for immunity and digestion.免疫与消化的共同起源。
Front Immunol. 2015 Feb 19;6:72. doi: 10.3389/fimmu.2015.00072. eCollection 2015.
10
Heat of combustion of cells of Pseudomonas fluorescens.荧光假单胞菌细胞的燃烧热。
Appl Microbiol. 1973 Apr;25(4):689-90. doi: 10.1128/am.25.4.689-690.1973.

本文引用的文献

1
Cell yields of bacteria grown on methane.以甲烷为生长底物的细菌细胞产量。
Appl Microbiol. 1967 Nov;15(6):1473-8. doi: 10.1128/am.15.6.1473-1478.1967.
2
Growth yields of bacteria on selected organic compounds.细菌在选定有机化合物上的生长产量。
Appl Microbiol. 1967 Nov;15(6):1332-8. doi: 10.1128/am.15.6.1332-1338.1967.
5
Allosteric regulation of enzyme activity.酶活性的别构调节
Adv Enzymol Relat Areas Mol Biol. 1966;28:41-154. doi: 10.1002/9780470122730.ch2.
7
Human intolerance to bacteria as food.人类对作为食物的细菌不耐受。
Nature. 1969 Jan 4;221(5175):84-5. doi: 10.1038/221084a0.
8
Regulation of enzyme function.酶功能的调节
Annu Rev Microbiol. 1969;23:47-68. doi: 10.1146/annurev.mi.23.100169.000403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验