Suppr超能文献

Subunit interactions in yeast glyceraldehyde-3-phosphate dehydrogenase.

作者信息

Mockrin S C, Byers L D, Koshland D E

出版信息

Biochemistry. 1975 Dec 16;14(25):5428-37. doi: 10.1021/bi00696a008.

Abstract

The spontaneous inactivation of yeast glyceraldehyde-3-phosphate dehydrogenase was found to fit a simple two-state model at pH 8.5 and 25 degrees. The first step is a relatively rapid dissociation of the tetramer to dimers with the equilibrium largely in favor of the tetramer. In the absence of NAD+ the dimer inactivates irreversibly. The apoenzyme is quite stable with a half-life for complete activity loss proportional to the square root of the enzyme concentration. Perturbances of the protein structure (by pH, ionic strength, and specific salts), which have no effect on the tetrameric state of the molecule, result in an alteration of the cooperativity of NAD+ binding, the reactivity of the active-site sulfhydryl group, and the catalytic activity of the enzyme. Covalent modification of two of the four active-site sulfhydryl groups has profound effects on the enzymic activity which are mediated by changes in the subunit interactions. Sedimentation analysis and hybridization studies indicate that the interaction between subunits remains strong after covalent modification. Under normal physiological and equilibrium dialysis conditions the protein is a tetramer. Equilibrium dialysis studies of NAD+ binding to the enzyme at pH 8.5 and 25 degrees reveal a mixed cooperativity pattern. A model consistent with these observations and the observed half-of-the-sites reactivity is that of ligand induced sequential conformational changes which are transferred across strongly interacting subunit domains. Methods for distinguishing negatively cooperative binding patterns from mixtures of denatured enzyme and multiple species are discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验