Suppr超能文献

酸性矿井水中的微生物异化硫循环

Microbial dissimilatory sulfur cycle in acid mine water.

作者信息

Tuttle J H, Dugan P R, Macmillan C B, Randles C I

出版信息

J Bacteriol. 1969 Feb;97(2):594-602. doi: 10.1128/jb.97.2.594-602.1969.

Abstract

Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5.

摘要

由于自养细菌的代谢作用,与煤相关的黄铁矿矿物会产生铁离子、硫酸根离子和氢离子。携带这些离子的水在由伐木场的木屑组成的多孔坝后积聚。当水渗入多孔坝时,富含有机养分,进而支持了坝下游水中异养细菌的生长和代谢。锯末坝内部及下方的异养微生物群落包括将硫酸根还原为硫化物的异化硫酸盐还原厌氧菌。产生的硫化物导致铁离子化学还原为亚铁离子,黑色的硫化亚铁沉淀沉积在池塘底部。与池塘上部的水相比,观察到池塘下部水的pH值有净增加。证明了木屑中的微生物活性,并根据实验室混合培养物中的糖分积累推断出一系列纤维素降解过程,最终产生作为硫酸盐还原细菌营养物质的发酵产物。分离并鉴定了一些微生物。除了硫酸盐还原细菌外,纯培养分离物的生化和生长特性通常与在酸性环境中观察到的反应一致。含有硫酸盐还原细菌的混合培养物在实验室中以锯末作为唯一养分,在pH值为3.0时能还原硫酸盐。从混合培养物中分离出的硫酸盐还原细菌纯培养物在pH值低于5.5时不能还原硫酸盐。

相似文献

1
Microbial dissimilatory sulfur cycle in acid mine water.
J Bacteriol. 1969 Feb;97(2):594-602. doi: 10.1128/jb.97.2.594-602.1969.
2
Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure.
Appl Microbiol. 1969 Feb;17(2):297-302. doi: 10.1128/am.17.2.297-302.1969.
3
Bioremediation of mine water.
Adv Biochem Eng Biotechnol. 2014;141:109-72. doi: 10.1007/10_2013_265.
4
Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery.
Adv Microb Physiol. 2019;75:205-231. doi: 10.1016/bs.ampbs.2019.07.002. Epub 2019 Oct 10.
5
Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin.
PLoS One. 2019 Feb 22;14(2):e0212787. doi: 10.1371/journal.pone.0212787. eCollection 2019.
9
Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue.
Int J Environ Res Public Health. 2020 Apr 15;17(8):2715. doi: 10.3390/ijerph17082715.

引用本文的文献

1
Sulphidogenic Bioprocesses for Acid Mine Water Treatment and Selective Recovery of Arsenic and Metals.
Adv Biochem Eng Biotechnol. 2024;190:1-30. doi: 10.1007/10_2024_264.
3
Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments.
Extremophiles. 2015 Jan;19(1):39-47. doi: 10.1007/s00792-014-0701-6. Epub 2014 Nov 5.
5
Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes.
Appl Environ Microbiol. 1987 Sep;53(9):2069-76. doi: 10.1128/aem.53.9.2069-2076.1987.
6
Microbially mediated leaching of low-sulfur coal in experimental coal columns.
Appl Environ Microbiol. 1987 May;53(5):1056-63. doi: 10.1128/aem.53.5.1056-1063.1987.
7
Sulfate reduction in freshwater sediments receiving Acid mine drainage.
Appl Environ Microbiol. 1985 Jan;49(1):179-86. doi: 10.1128/aem.49.1.179-186.1985.
9
Energy conservation in acidophilic bacteria.
Microbiol Rev. 1983 Dec;47(4):579-95. doi: 10.1128/mr.47.4.579-595.1983.
10
Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure.
Appl Microbiol. 1969 Feb;17(2):297-302. doi: 10.1128/am.17.2.297-302.1969.

本文引用的文献

1
The Role of Microorganisms in Acid Mine Drainage: A Preliminary Report.
Science. 1947 Sep 19;106(2751):253-6. doi: 10.1126/science.106.2751.253.
2
The Culture and Physiology of a Thermophilic Cellulose-fermenting Bacterium.
J Bacteriol. 1948 Nov;56(5):653-63. doi: 10.1128/jb.56.5.653-663.1948.
3
Detection of sugars on paper chromatograms.
Nature. 1950 Sep 9;166(4219):444-5. doi: 10.1038/166444b0.
4
ENERGY SUPPLY FOR THE CHEMOAUTOTROPH FERROBACILLUS FERROOXIDANS.
J Bacteriol. 1965 Mar;89(3):825-34. doi: 10.1128/jb.89.3.825-834.1965.
5
MICROORGANISMS IN ACID DRAINAGE FROM A COPPER MINE.
J Bacteriol. 1963 Aug;86(2):350-2. doi: 10.1128/jb.86.2.350-352.1963.
6
Versatile medium for the enumeration of sulfate-reducing bacteria.
Appl Microbiol. 1963 May;11(3):265-7. doi: 10.1128/am.11.3.265-267.1963.
8
Energy coupling in Desulfovibrio desulfuricans.
J Bacteriol. 1960 Oct;80(4):501-7. doi: 10.1128/jb.80.4.501-507.1960.
10
Identification of Pseudomonas pyocyanea by the oxidase reaction.
Nature. 1956 Sep 29;178(4535):703. doi: 10.1038/178703a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验