Tuttle J H, Dugan P R, Macmillan C B, Randles C I
J Bacteriol. 1969 Feb;97(2):594-602. doi: 10.1128/jb.97.2.594-602.1969.
Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5.
由于自养细菌的代谢作用,与煤相关的黄铁矿矿物会产生铁离子、硫酸根离子和氢离子。携带这些离子的水在由伐木场的木屑组成的多孔坝后积聚。当水渗入多孔坝时,富含有机养分,进而支持了坝下游水中异养细菌的生长和代谢。锯末坝内部及下方的异养微生物群落包括将硫酸根还原为硫化物的异化硫酸盐还原厌氧菌。产生的硫化物导致铁离子化学还原为亚铁离子,黑色的硫化亚铁沉淀沉积在池塘底部。与池塘上部的水相比,观察到池塘下部水的pH值有净增加。证明了木屑中的微生物活性,并根据实验室混合培养物中的糖分积累推断出一系列纤维素降解过程,最终产生作为硫酸盐还原细菌营养物质的发酵产物。分离并鉴定了一些微生物。除了硫酸盐还原细菌外,纯培养分离物的生化和生长特性通常与在酸性环境中观察到的反应一致。含有硫酸盐还原细菌的混合培养物在实验室中以锯末作为唯一养分,在pH值为3.0时能还原硫酸盐。从混合培养物中分离出的硫酸盐还原细菌纯培养物在pH值低于5.5时不能还原硫酸盐。