Institut de Minéralogie, Physique des Mat00E9riaux et Cosmochimie, CNRS UMR 7590, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France.
Laboratoire de Géochimie des Eaux, Institut de Physique du Globe de Paris, UMR CNRS 7154, Université Paris Diderot, Paris, France.
PLoS One. 2019 Feb 22;14(2):e0212787. doi: 10.1371/journal.pone.0212787. eCollection 2019.
Both iron- and sulfur- reducing bacteria strongly impact the mineralogy of iron, but their activity has long been thought to be spatially and temporally segregated based on the higher thermodynamic yields of iron over sulfate reduction. However, recent evidence suggests that sulfur cycling can predominate even under ferruginous conditions. In this study, we investigated the potential for bacterial iron and sulfur metabolisms in the iron-rich (1.2 mM dissolved Fe2+), sulfate-poor (< 20 μM) Lake Pavin which is expected to host large populations of iron-reducing and iron-oxidizing microorganisms influencing the mineralogy of iron precipitates in its permanently anoxic bottom waters and sediments. 16S rRNA gene amplicon libraries from at and below the oxycline revealed that highly diverse populations of sulfur/sulfate-reducing (SRB) and sulfur/sulfide-oxidizing bacteria represented up to 10% and 5% of the total recovered sequences in situ, respectively, which together was roughly equivalent to the fraction of putative iron cycling bacteria. In enrichment cultures amended with key iron phases identified in situ (ferric iron phosphate, ferrihydrite) or with soluble iron (Fe2+), SRB were the most competitive microorganisms, both in the presence and absence of added sulfate. The large fraction of Sulfurospirillum, which are known to reduce thiosulfate and sulfur but not sulfate, present in all cultures was likely supported by Fe(III)-driven sulfide oxidation. These results support the hypothesis that an active cryptic sulfur cycle interacts with iron cycling in the lake. Analyses of mineral phases showed that ferric phosphate in cultures dominated by SRB was transformed to vivianite with concomitant precipitation of iron sulfides. As colloidal FeS and vivianite have been reported in the monimolimnion, we suggest that SRB along with iron-reducing bacteria strongly influence iron mineralogy in the water column and sediments of Lake Pavin.
铁还原菌和硫还原菌均强烈影响铁的矿物学特性,但长期以来,基于铁还原相对于硫酸盐还原具有更高的热力学产率,人们认为它们的活动在空间和时间上是分离的。然而,最近的证据表明,即使在富含铁的条件下,硫循环也可能占主导地位。在这项研究中,我们调查了富含铁(1.2 mM 溶解的 Fe2+)、贫硫酸盐(<20 μM)的 Pavin 湖中铁和硫代谢的细菌的潜力,该湖预计拥有大量影响其缺氧底部水和沉积物中铁沉淀矿物学的铁还原和铁氧化微生物。在氧跃层上下的 16S rRNA 基因扩增文库中,高度多样化的硫/硫酸盐还原菌(SRB)和硫/亚硫酸盐氧化菌种群分别代表了原位总回收序列的 10%和 5%,这与假定的铁循环细菌的比例大致相当。在添加原位鉴定的关键铁相(铁磷酸盐、水铁矿)或添加可溶性铁(Fe2+)的富集培养物中,SRB 是最具竞争力的微生物,无论是在添加硫酸盐还是不添加硫酸盐的情况下。所有培养物中存在的大量 Sulfurospirillum,它们已知可以还原硫代硫酸盐和硫,但不能还原硫酸盐,可能是由 Fe(III)驱动的硫化物氧化支持的。这些结果支持了一个假设,即一个活跃的隐匿硫循环与湖泊中的铁循环相互作用。矿物相分析表明,在以 SRB 为主的培养物中,铁磷酸盐被转化为蓝铁矿,同时沉淀出铁硫化物。由于在 monimolimnion 中报道了胶体 FeS 和蓝铁矿,我们认为 SRB 与铁还原菌一起强烈影响 Pavin 湖水柱和沉积物中的铁矿物学。