Suppr超能文献

鸡毒支原体中的糖转运

Sugar transport in Mycoplasma gallisepticum.

作者信息

Rottem S, Razin S

出版信息

J Bacteriol. 1969 Feb;97(2):787-92. doi: 10.1128/jb.97.2.787-792.1969.

Abstract

Mycoplasma gallisepticum cells were found to contain two different sugar transport systems, one for d-glucose and alpha-methyl-d-glucoside (alpha-MG) and the other for d-mannose and d-fructose. Both systems were noninducible, stereospecific, dependent on temperature and pH, and sensitive to sulfhydryl-blocking reagents. The rate of sugar uptake depended on its external concentration, obeying Michaelis-Menten kinetics. The sugar accumulated in the cells against a concentration gradient, and an energy requirement for accumulation was demonstrated with alpha-MG. Both transport systems thus meet the criteria of active transport. The exit of alpha-MG from the cells, like its entry, depended on temperature and was accelerated by energy supplied by the oxidizable d-mannose. d-Glucose accelerated alpha-MG exit, apparently by an exchange reaction. A method for measuring the intercellular space and intracellular free-water volume of Mycoplasma was devised, and several of its applications are described.

摘要

鸡败血支原体细胞被发现含有两种不同的糖转运系统,一种用于转运D-葡萄糖和α-甲基-D-葡萄糖苷(α-MG),另一种用于转运D-甘露糖和D-果糖。这两种系统均为非诱导性、立体特异性,依赖温度和pH值,且对巯基阻断试剂敏感。糖的摄取速率取决于其外部浓度,符合米氏动力学。糖逆浓度梯度在细胞内积累,并且用α-MG证明了积累需要能量。因此,这两种转运系统均符合主动运输的标准。α-MG从细胞中排出,与其进入细胞一样,取决于温度,并由可氧化的D-甘露糖提供的能量加速。D-葡萄糖显然通过交换反应加速了α-MG的排出。设计了一种测量支原体细胞间空间和细胞内自由水体积的方法,并描述了其几种应用。

相似文献

1
Sugar transport in Mycoplasma gallisepticum.
J Bacteriol. 1969 Feb;97(2):787-92. doi: 10.1128/jb.97.2.787-792.1969.
2
Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y.
J Bacteriol. 1972 Aug;111(2):454-8. doi: 10.1128/jb.111.2.454-458.1972.
3
Renal sugar transport in the winter flounder. VI. Reabsorption of D-mannose.
Am J Physiol. 1982 Apr;242(4):F415-22. doi: 10.1152/ajprenal.1982.242.4.F415.
4
Distribution of a phosphoenolypyruvate-dependent sugar phosphotransferase system in mycoplasms.
J Bacteriol. 1973 Jan;113(1):212-7. doi: 10.1128/jb.113.1.212-217.1973.
5
Amino acid transport in Mycoplasma.
J Bacteriol. 1968 May;95(5):1685-91. doi: 10.1128/jb.95.5.1685-1691.1968.
7
Support for the existence of an active transport mechanism of fructose in the rat.
Biochim Biophys Acta. 1972 Oct 23;288(1):137-44. doi: 10.1016/0005-2736(72)90231-3.
8
Studies on the transport of -methyl-D-glucoside in Bacillus subtilis 168.
Biochimie. 1971;53(9):1015-21. doi: 10.1016/s0300-9084(71)80069-x.
9
[Carbohydrate transport in Mycoplasma laidlawii cells].
Dokl Akad Nauk SSSR. 1973 Mar-Apr;209(1):213-6.
10
Sodium and proton transport in Mycoplasma gallisepticum.
J Bacteriol. 1985 Sep;163(3):1250-7. doi: 10.1128/jb.163.3.1250-1257.1985.

引用本文的文献

1
Comparative genomic analyses of attenuated strains of Mycoplasma gallisepticum.
Infect Immun. 2010 Apr;78(4):1760-71. doi: 10.1128/IAI.01172-09. Epub 2010 Feb 1.
3
Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis.
J Bacteriol. 1993 Jun;175(11):3253-8. doi: 10.1128/jb.175.11.3253-3258.1993.
4
Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y.
J Bacteriol. 1972 Aug;111(2):454-8. doi: 10.1128/jb.111.2.454-458.1972.
5
Distribution of a phosphoenolypyruvate-dependent sugar phosphotransferase system in mycoplasms.
J Bacteriol. 1973 Jan;113(1):212-7. doi: 10.1128/jb.113.1.212-217.1973.
6
Osmolar concentration and fixation of mycoplasmas.
J Bacteriol. 1972 Jun;110(3):1154-62. doi: 10.1128/jb.110.3.1154-1162.1972.
7
Cell biology of the mycoplasmas.
Bacteriol Rev. 1972 Sep;36(3):263-90. doi: 10.1128/br.36.3.263-290.1972.
9
Properties of the 3-o-methyl-D-glucose transport system in Acholeplasma laidlawii.
J Bacteriol. 1976 Jan;125(1):1-7. doi: 10.1128/jb.125.1.1-7.1976.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Location of enzymes in Azotobacteragilis.
J Bacteriol. 1962 Jan;83(1):158-68. doi: 10.1128/jb.83.1.158-168.1962.
3
THE GLUCOSE PERMEASE SYSTEM IN BACTERIA.
Biochim Biophys Acta. 1964 Mar 30;79:337-50.
4
ACCUMULATION OF GLUCOSE AND GALACTOSE BY STREPTOCOCCUS FAECALIS.
J Gen Microbiol. 1964 Mar;34:389-99. doi: 10.1099/00221287-34-3-389.
5
OSMOTIC LYSIS OF MYCOPLASMA.
J Gen Microbiol. 1963 Dec;33:471-5. doi: 10.1099/00221287-33-3-471.
6
STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE.
Biochim Biophys Acta. 1963 Nov 15;78:505-15. doi: 10.1016/0006-3002(63)90912-0.
7
Substrate specificity of a glucose permease of Escherichia coli.
J Bacteriol. 1962 Nov;84(5):877-81. doi: 10.1128/jb.84.5.877-881.1962.
8
Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars.
Biochim Biophys Acta. 1967 Jul 3;135(3):483-95. doi: 10.1016/0005-2736(67)90038-7.
9
Amino acid transport in Mycoplasma.
J Bacteriol. 1968 May;95(5):1685-91. doi: 10.1128/jb.95.5.1685-1691.1968.
10
Reassembly of Mycoplasma membranes disaggregated by detergents.
Arch Biochem Biophys. 1968 Apr;125(1):46-56. doi: 10.1016/0003-9861(68)90637-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验