Suppr超能文献

鱼类(鲤科)视网膜中颜色单元的S电位。

S-potentials from colour units in the retina of fish (Cyprinidae).

作者信息

Naka K I, Rushton W A

出版信息

J Physiol. 1966 Aug;185(3):536-55. doi: 10.1113/jphysiol.1966.sp008001.

Abstract
  1. S-potentials recorded from the excised tench retina left undisturbed in the optic cup show colour cells of the two types originally described by Svaetichin & MacNichol (1958).2. One type (green/blue, G/B) is depolarized by signals from green cones and hyperpolarized by blue cones. The other type (red/green, R/G) is depolarized by deep red and hyperpolarized by green cones.3. By superposing spectral flashes upon steady adapting lights it is possible to find a spectral range in which only one kind of cone is effective. In this range the effect of any spectral light may be matched with that of any other provided the energies are linked in a fixed ratio that defines the action spectrum of the pigment.4. The green pigment has an action spectrum with maximum at 540 nm and corresponds well with the pigment that Marks measured in ;green' cones. The blue pigment has not been measured, but it probably corresponds with that found by Marks in ;blue' cones. However, the red pigment whose action spectrum we measured had its maximum at 680 nm, whereas the difference spectrum of Marks's red cone pigment peaked at 620 nm. The 620 nm cones excite the luminosity S-units but not the R/G units.5. In the range where only one type of cone is effective the relation between the light intensity, I(0), and V(0), the S-potential generated (both expressed in suitable units), is given by equation (1) p. 545. It is the relation that would be found if cone signals increased the conductance through a polarized ;S-membrane' in proportion to the flux of caught quanta.
摘要
  1. 从置于视杯内未受干扰的离体丁鲷视网膜记录到的S电位显示出Svaetichin和MacNichol(1958年)最初描述的两种类型的色细胞。

  2. 一种类型(绿/蓝,G/B)被来自绿色视锥细胞的信号去极化,并被蓝色视锥细胞超极化。另一种类型(红/绿,R/G)被深红色去极化,并被绿色视锥细胞超极化。

  3. 通过将光谱闪光叠加在稳定的适应光上,可以找到一个光谱范围,其中只有一种视锥细胞起作用。在这个范围内,任何光谱光的效果都可以与任何其他光谱光的效果相匹配,只要能量以定义色素作用光谱的固定比例相关联。

  4. 绿色色素的作用光谱在540nm处有最大值,与Marks在“绿色”视锥细胞中测量的色素非常吻合。蓝色色素尚未测量,但它可能与Marks在“蓝色”视锥细胞中发现的色素相对应。然而,我们测量其作用光谱的红色色素在680nm处有最大值,而Marks的红色视锥细胞色素的差异光谱在620nm处达到峰值。620nm的视锥细胞激发亮度S单位,但不激发R/G单位。

  5. 在只有一种视锥细胞起作用的范围内,光强度I(0)与产生的S电位V(0)(两者均以合适的单位表示)之间的关系由第545页的方程(1)给出。这是如果视锥细胞信号按捕获量子通量的比例增加通过极化的“S膜”的电导时会发现的关系。

相似文献

1
S-potentials from colour units in the retina of fish (Cyprinidae).
J Physiol. 1966 Aug;185(3):536-55. doi: 10.1113/jphysiol.1966.sp008001.
2
S-potentials from luminosity units in the retina of fish (Cyprinidae).
J Physiol. 1966 Aug;185(3):587-99. doi: 10.1113/jphysiol.1966.sp008003.
3
An attempt to analyse colour reception by electrophysiology.
J Physiol. 1966 Aug;185(3):556-86. doi: 10.1113/jphysiol.1966.sp008002.
4
Colour-dependence of cone responses in the turtle retina.
J Physiol. 1973 Oct;234(1):199-216. doi: 10.1113/jphysiol.1973.sp010341.
6
Detection and resolution of visual stimuli by turtle photoreceptors.
J Physiol. 1973 Oct;234(1):163-98. doi: 10.1113/jphysiol.1973.sp010340.
7
Interactions leading to horizontal cell responses in the turtle retina.
J Physiol. 1974 Jul;240(1):177-98. doi: 10.1113/jphysiol.1974.sp010606.
8
The generation and spread of S-potentials in fish (Cyprinidae).
J Physiol. 1967 Sep;192(2):437-61. doi: 10.1113/jphysiol.1967.sp008308.
9
The simple perfection of quantum correlation in human vision.
Prog Neurobiol. 2006 Jan;78(1):38-60. doi: 10.1016/j.pneurobio.2005.11.006. Epub 2005 Dec 27.
10
S cones: Evolution, retinal distribution, development, and spectral sensitivity.
Vis Neurosci. 2014 Mar;31(2):115-38. doi: 10.1017/S0952523813000242. Epub 2013 Jul 29.

引用本文的文献

1
Ocular drift shakes the stationary view on pattern vision.
J Vis. 2025 Jul 1;25(8):17. doi: 10.1167/jov.25.8.17.
2
A Comparison of Image Statistics of Peacock Jumping Spider Colour Patterns and Natural Scenes.
Ecol Evol. 2025 May 23;15(5):e71363. doi: 10.1002/ece3.71363. eCollection 2025 May.
3
Genetic, developmental, and neural changes underlying the evolution of butterfly mate preference.
PLoS Biol. 2025 Mar 11;23(3):e3002989. doi: 10.1371/journal.pbio.3002989. eCollection 2025 Mar.
5
Lateral inhibition in V1 controls neural and perceptual contrast sensitivity.
Nat Neurosci. 2025 Apr;28(4):836-847. doi: 10.1038/s41593-025-01888-4. Epub 2025 Mar 3.
6
Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex.
bioRxiv. 2025 Jan 28:2025.01.28.635373. doi: 10.1101/2025.01.28.635373.
8
Fixational eye movements and edge integration in lightness perception.
Vision Res. 2025 Feb;227:108517. doi: 10.1016/j.visres.2024.108517. Epub 2025 Jan 6.
10
Full-Field Electroretinogram Responses in Rodent Models of Ganglion Cell Injury.
Methods Mol Biol. 2025;2858:207-218. doi: 10.1007/978-1-0716-4140-8_17.

本文引用的文献

1
Visual pigment 467, a photosensitive pigment present in tench retinae.
J Physiol. 1952 Mar;116(3):257-89. doi: 10.1113/jphysiol.1952.sp004705.
2
VISUAL PIGMENTS OF SINGLE GOLDFISH CONES.
J Physiol. 1965 May;178(1):14-32. doi: 10.1113/jphysiol.1965.sp007611.
5
Retinal mechanisms for chromatic and achromatic vision.
Ann N Y Acad Sci. 1959 Nov 12;74(2):385-404. doi: 10.1111/j.1749-6632.1958.tb39560.x.
6
Origin of so-called cone action potential.
J Neurophysiol. 1959 Jan;22(1):102-11. doi: 10.1152/jn.1959.22.1.102.
7
Electric responses from the isolated retinas of fishes.
Am J Ophthalmol. 1958 Sep;46(3 Part 2):26-40; discussion 40-6. doi: 10.1016/0002-9394(58)90053-9.
9
The colour of light of very long wavelength.
J Physiol. 1955 Oct 28;130(1):35-44. doi: 10.1113/jphysiol.1955.sp005390.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验